Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| # A simple MLP layer | |
| class FeedForwardNetwork(nn.Module): | |
| def __init__(self, input_size, hidden_size, output_size, dropout_rate=0): | |
| super(FeedForwardNetwork, self).__init__() | |
| self.dropout_rate = dropout_rate | |
| self.linear1 = nn.Linear(input_size, hidden_size) | |
| self.linear2 = nn.Linear(hidden_size, output_size) | |
| def forward(self, x): | |
| x_proj = F.dropout(F.relu(self.linear1(x)), p=self.dropout_rate, training=self.training) | |
| x_proj = self.linear2(x_proj) | |
| return x_proj | |
| # Span Prediction for Start Position | |
| class PoolerStartLogits(nn.Module): | |
| def __init__(self, hidden_size, num_classes): | |
| super(PoolerStartLogits, self).__init__() | |
| self.dense = nn.Linear(hidden_size, num_classes) | |
| def forward(self, hidden_states, p_mask=None): | |
| x = self.dense(hidden_states) | |
| return x | |
| # Span Prediction for End Position | |
| class PoolerEndLogits(nn.Module): | |
| def __init__(self, hidden_size, num_classes): | |
| super(PoolerEndLogits, self).__init__() | |
| self.dense_0 = nn.Linear(hidden_size, hidden_size) | |
| self.activation = nn.Tanh() | |
| self.LayerNorm = nn.LayerNorm(hidden_size) | |
| self.dense_1 = nn.Linear(hidden_size, num_classes) | |
| def forward(self, hidden_states, start_positions=None, p_mask=None): | |
| x = self.dense_0(torch.cat([hidden_states, start_positions], dim=-1)) | |
| x = self.activation(x) | |
| x = self.LayerNorm(x) | |
| x = self.dense_1(x) | |
| return x | |