Spaces:
Running
Running
| # -*- coding: utf-8 -*- | |
| # @Time : 2022/4/12 12:12 下午 | |
| # @Author : JianingWang | |
| # @File : duma.py | |
| import math | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from transformers.models.bert.modeling_bert import BertModel, BertPreTrainedModel | |
| from transformers.models.roberta.modeling_roberta import RobertaModel, RobertaPreTrainedModel | |
| from transformers.models.albert.modeling_albert import AlbertModel, AlbertPreTrainedModel | |
| from transformers.models.megatron_bert.modeling_megatron_bert import MegatronBertModel, MegatronBertPreTrainedModel | |
| from transformers.modeling_outputs import MultipleChoiceModelOutput | |
| def split_context_query(sequence_output, pq_end_pos, input_ids): | |
| context_max_len = sequence_output.size(1) | |
| query_max_len = sequence_output.size(1) | |
| sep_tok_len = 1 # [SEP] | |
| context_sequence_output = sequence_output.new( | |
| torch.Size((sequence_output.size(0), context_max_len, sequence_output.size(2)))).zero_() | |
| query_sequence_output = sequence_output.new_zeros( | |
| (sequence_output.size(0), query_max_len, sequence_output.size(2))) | |
| query_attention_mask = sequence_output.new_zeros((sequence_output.size(0), query_max_len)) | |
| context_attention_mask = sequence_output.new_zeros((sequence_output.size(0), context_max_len)) | |
| for i in range(0, sequence_output.size(0)): | |
| p_end = pq_end_pos[i][0] | |
| q_end = pq_end_pos[i][1] | |
| context_sequence_output[i, :min(context_max_len, p_end)] = sequence_output[i, 1: 1 + min(context_max_len, p_end)] | |
| idx = min(query_max_len, q_end - p_end - sep_tok_len) | |
| query_sequence_output[i, :idx] = sequence_output[i, p_end + sep_tok_len + 1: p_end + sep_tok_len + 1 + min(q_end - p_end - sep_tok_len, query_max_len)] | |
| query_attention_mask[i, :idx] = sequence_output.new_ones((1, query_max_len))[0, :idx] | |
| context_attention_mask[i, : min(context_max_len, p_end)] = sequence_output.new_ones((1, context_max_len))[0, : min(context_max_len, p_end)] | |
| return context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask | |
| class BertCoAttention(nn.Module): | |
| def __init__(self, config): | |
| super(BertCoAttention, self).__init__() | |
| if config.hidden_size % config.num_attention_heads != 0: | |
| raise ValueError( | |
| "The hidden size (%d) is not a multiple of the number of attention " | |
| "heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
| self.output_attentions = config.output_attentions | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward(self, context_states, query_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None): | |
| mixed_query_layer = self.query(query_states) | |
| extended_attention_mask = attention_mask[:, None, None, :] | |
| # extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| attention_mask = extended_attention_mask | |
| # If this is instantiated as a cross-attention module, the keys | |
| # and values come from an encoder; the attention mask needs to be | |
| # such that the encoder"s padding tokens are not attended to. | |
| if encoder_hidden_states is not None: | |
| mixed_key_layer = self.key(encoder_hidden_states) | |
| mixed_value_layer = self.value(encoder_hidden_states) | |
| attention_mask = encoder_attention_mask | |
| else: | |
| mixed_key_layer = self.key(context_states) | |
| mixed_value_layer = self.value(context_states) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| key_layer = self.transpose_for_scores(mixed_key_layer) | |
| value_layer = self.transpose_for_scores(mixed_value_layer) | |
| # Take the dot product between "query" and "key" to get the raw attention scores. | |
| attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| if attention_mask is not None: | |
| # Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs, value_layer) | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| # outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,) | |
| outputs = context_layer | |
| return outputs | |
| class BertDUMAForMultipleChoice(BertPreTrainedModel): | |
| def __init__(self, config): | |
| super(BertDUMAForMultipleChoice, self).__init__(config) | |
| self.bert = BertModel(config) | |
| self.classifier_2 = nn.Linear(2 * config.hidden_size, 1) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.bert_att = BertCoAttention(config) | |
| self.init_weights() | |
| def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| inputs_embeds=None, labels=None, pq_end_pos=None, iter=1): | |
| num_choices = input_ids.shape[1] | |
| flat_input_ids = input_ids.view(-1, input_ids.size(-1)) | |
| flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
| flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
| flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
| flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None | |
| flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None | |
| outputs = self.bert( | |
| input_ids=flat_input_ids, | |
| attention_mask=flat_attention_mask, | |
| token_type_ids=flat_token_type_ids, | |
| position_ids=flat_position_ids, | |
| head_mask=flat_head_mask, | |
| inputs_embeds=flat_inputs_embeds | |
| ) | |
| sequence_output = outputs[0] | |
| pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1)) | |
| context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \ | |
| split_context_query(sequence_output, pq_end_pos, input_ids) | |
| for _ in range(0, iter): | |
| cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask) | |
| qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask) | |
| query_sequence_output = cq_biatt_output | |
| context_sequence_output = qc_biatt_output | |
| cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1) | |
| pooled_output = self.dropout(cat_output) | |
| logits = self.classifier_2(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| outputs = (loss,) + outputs | |
| return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |
| class RobertaDUMAForMultipleChoice(RobertaPreTrainedModel): | |
| def __init__(self, config): | |
| super(RobertaDUMAForMultipleChoice, self).__init__(config) | |
| self.roberta = RobertaModel(config) | |
| self.classifier_2 = nn.Linear(2 * config.hidden_size, 1) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.bert_att = BertCoAttention(config) | |
| self.init_weights() | |
| def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| inputs_embeds=None, labels=None, pq_end_pos=None, iter=1): | |
| num_choices = input_ids.shape[1] | |
| flat_input_ids = input_ids.view(-1, input_ids.size(-1)) | |
| flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
| flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
| flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
| flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None | |
| flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None | |
| outputs = self.roberta( | |
| input_ids=flat_input_ids, | |
| attention_mask=flat_attention_mask, | |
| token_type_ids=flat_token_type_ids, | |
| position_ids=flat_position_ids, | |
| head_mask=flat_head_mask, | |
| inputs_embeds=flat_inputs_embeds | |
| ) | |
| sequence_output = outputs[0] | |
| pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1)) | |
| context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \ | |
| split_context_query(sequence_output, pq_end_pos, input_ids) | |
| for _ in range(0, iter): | |
| cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask) | |
| qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask) | |
| query_sequence_output = cq_biatt_output | |
| context_sequence_output = qc_biatt_output | |
| cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1) | |
| pooled_output = self.dropout(cat_output) | |
| logits = self.classifier_2(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| outputs = (loss,) + outputs | |
| return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |
| class AlbertDUMAForMultipleChoice(AlbertPreTrainedModel): | |
| def __init__(self, config): | |
| super(AlbertDUMAForMultipleChoice, self).__init__(config) | |
| self.albert = AlbertModel(config) | |
| self.classifier_2 = nn.Linear(2 * config.hidden_size, 1) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.bert_att = BertCoAttention(config) | |
| self.init_weights() | |
| def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| inputs_embeds=None, labels=None, pq_end_pos=None, iter=1): | |
| num_choices = input_ids.shape[1] | |
| flat_input_ids = input_ids.view(-1, input_ids.size(-1)) | |
| flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
| flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
| flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
| flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None | |
| flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None | |
| outputs = self.albert( | |
| input_ids=flat_input_ids, | |
| attention_mask=flat_attention_mask, | |
| token_type_ids=flat_token_type_ids, | |
| position_ids=flat_position_ids, | |
| head_mask=flat_head_mask, | |
| inputs_embeds=flat_inputs_embeds | |
| ) | |
| sequence_output = outputs[0] | |
| pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1)) | |
| context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \ | |
| split_context_query(sequence_output, pq_end_pos, input_ids) | |
| for _ in range(0, iter): | |
| cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask) | |
| qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask) | |
| query_sequence_output = cq_biatt_output | |
| context_sequence_output = qc_biatt_output | |
| cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1) | |
| pooled_output = self.dropout(cat_output) | |
| logits = self.classifier_2(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| outputs = (loss,) + outputs | |
| return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |
| class MegatronDumaForMultipleChoice(MegatronBertPreTrainedModel): | |
| def __init__(self, config): | |
| super(MegatronDumaForMultipleChoice, self).__init__(config) | |
| self.bert = MegatronBertModel(config) | |
| self.classifier_2 = nn.Linear(2 * config.hidden_size, 1) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.bert_att = BertCoAttention(config) | |
| self.init_weights() | |
| def forward(self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, | |
| inputs_embeds=None, labels=None, pq_end_pos=None, iter=1): | |
| num_choices = input_ids.shape[1] | |
| flat_input_ids = input_ids.view(-1, input_ids.size(-1)) | |
| flat_position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None | |
| flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None | |
| flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None | |
| flat_head_mask = head_mask.view(-1, head_mask.size(-1)) if head_mask is not None else None | |
| flat_inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1)) if inputs_embeds is not None else None | |
| outputs = self.bert( | |
| input_ids=flat_input_ids, | |
| attention_mask=flat_attention_mask, | |
| token_type_ids=flat_token_type_ids, | |
| position_ids=flat_position_ids, | |
| head_mask=flat_head_mask, | |
| inputs_embeds=flat_inputs_embeds | |
| ) | |
| sequence_output = outputs[0] | |
| pq_end_pos = pq_end_pos.view(-1, pq_end_pos.size(-1)) | |
| context_sequence_output, query_sequence_output, context_attention_mask, query_attention_mask = \ | |
| split_context_query(sequence_output, pq_end_pos, input_ids) | |
| for _ in range(0, iter): | |
| cq_biatt_output = self.bert_att(context_sequence_output, query_sequence_output, context_attention_mask) | |
| qc_biatt_output = self.bert_att(query_sequence_output, context_sequence_output, query_attention_mask) | |
| query_sequence_output = cq_biatt_output | |
| context_sequence_output = qc_biatt_output | |
| cat_output = torch.cat([torch.mean(qc_biatt_output, 1), torch.mean(cq_biatt_output, 1)], 1) | |
| pooled_output = self.dropout(cat_output) | |
| logits = self.classifier_2(pooled_output) | |
| reshaped_logits = logits.view(-1, num_choices) | |
| outputs = (reshaped_logits,) + outputs[2:] # add hidden states and attention if they are here | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(reshaped_logits, labels) | |
| outputs = (loss,) + outputs | |
| return outputs # (loss), reshaped_logits, (hidden_states), (attentions) | |