Spaces:
Sleeping
Sleeping
Commit
·
3169cc9
1
Parent(s):
d131d1a
Upload kg.py
Browse files- models/kg.py +247 -0
models/kg.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
# @Time : 2022/2/17 11:26 上午
|
| 3 |
+
# @Author : JianingWang
|
| 4 |
+
# @File : kg.py
|
| 5 |
+
import torch
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import CrossEntropyLoss
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from collections import OrderedDict
|
| 10 |
+
from transformers.models.bert import BertPreTrainedModel, BertModel
|
| 11 |
+
from transformers.models.bert.modeling_bert import BertOnlyMLMHead
|
| 12 |
+
|
| 13 |
+
class MLPLayer(nn.Module):
|
| 14 |
+
"""
|
| 15 |
+
Head for getting sentence representations over RoBERTa/BERT"s CLS representation.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
def __init__(self, config):
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 21 |
+
self.activation = nn.Tanh()
|
| 22 |
+
|
| 23 |
+
def forward(self, features, **kwargs):
|
| 24 |
+
x = self.dense(features)
|
| 25 |
+
x = self.activation(x)
|
| 26 |
+
|
| 27 |
+
return x
|
| 28 |
+
|
| 29 |
+
class Similarity(nn.Module):
|
| 30 |
+
"""
|
| 31 |
+
Dot product or cosine similarity
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
def __init__(self, temp):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.temp = temp
|
| 37 |
+
self.cos = nn.CosineSimilarity(dim=-1)
|
| 38 |
+
|
| 39 |
+
def forward(self, x, y):
|
| 40 |
+
return self.cos(x, y) / self.temp
|
| 41 |
+
|
| 42 |
+
class BertForPretrainWithKG(BertPreTrainedModel):
|
| 43 |
+
|
| 44 |
+
def __init__(self, config):
|
| 45 |
+
super().__init__(config)
|
| 46 |
+
self.num_labels = config.num_labels
|
| 47 |
+
self.config = config
|
| 48 |
+
self.bert = BertModel(config)
|
| 49 |
+
classifier_dropout = (
|
| 50 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 51 |
+
)
|
| 52 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 53 |
+
self.cls = BertOnlyMLMHead(config)
|
| 54 |
+
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
|
| 55 |
+
self.post_init()
|
| 56 |
+
|
| 57 |
+
def forward(
|
| 58 |
+
self,
|
| 59 |
+
input_ids=None,
|
| 60 |
+
attention_mask=None,
|
| 61 |
+
token_type_ids=None,
|
| 62 |
+
position_ids=None,
|
| 63 |
+
head_mask=None,
|
| 64 |
+
inputs_embeds=None,
|
| 65 |
+
encoder_hidden_states=None,
|
| 66 |
+
encoder_attention_mask=None,
|
| 67 |
+
labels=None,
|
| 68 |
+
ner_labels=None,
|
| 69 |
+
output_attentions=None,
|
| 70 |
+
output_hidden_states=None,
|
| 71 |
+
return_dict=None,
|
| 72 |
+
):
|
| 73 |
+
|
| 74 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 75 |
+
outputs = self.bert(
|
| 76 |
+
input_ids,
|
| 77 |
+
attention_mask=attention_mask,
|
| 78 |
+
token_type_ids=token_type_ids,
|
| 79 |
+
position_ids=position_ids,
|
| 80 |
+
head_mask=head_mask,
|
| 81 |
+
inputs_embeds=inputs_embeds,
|
| 82 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 83 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 84 |
+
output_attentions=output_attentions,
|
| 85 |
+
output_hidden_states=output_hidden_states,
|
| 86 |
+
return_dict=return_dict,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
sequence_output = outputs.last_hidden_state
|
| 90 |
+
# mlm
|
| 91 |
+
prediction_scores = self.cls(sequence_output)
|
| 92 |
+
# ner
|
| 93 |
+
sequence_output = self.dropout(sequence_output)
|
| 94 |
+
ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
|
| 95 |
+
|
| 96 |
+
# mlm
|
| 97 |
+
masked_lm_loss, ner_loss, total_loss = None, None, None
|
| 98 |
+
if labels is not None:
|
| 99 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
| 100 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 101 |
+
|
| 102 |
+
if ner_labels is not None:
|
| 103 |
+
loss_fct = CrossEntropyLoss()
|
| 104 |
+
# Only keep active parts of the loss
|
| 105 |
+
|
| 106 |
+
active_loss = attention_mask.repeat(self.config.entity_type_num, 1, 1).view(-1) == 1
|
| 107 |
+
active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
|
| 108 |
+
active_labels = torch.where(
|
| 109 |
+
active_loss, ner_labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(ner_labels)
|
| 110 |
+
)
|
| 111 |
+
ner_loss = loss_fct(active_logits, active_labels)
|
| 112 |
+
|
| 113 |
+
if masked_lm_loss:
|
| 114 |
+
total_loss = masked_lm_loss + ner_loss * 4
|
| 115 |
+
|
| 116 |
+
return OrderedDict([
|
| 117 |
+
("loss", total_loss),
|
| 118 |
+
("mlm_loss", masked_lm_loss.unsqueeze(0)),
|
| 119 |
+
("ner_loss", ner_loss.unsqueeze(0)),
|
| 120 |
+
("logits", prediction_scores.argmax(2)),
|
| 121 |
+
("ner_logits", ner_logits.argmax(3))
|
| 122 |
+
])
|
| 123 |
+
# MaskedLMOutput(
|
| 124 |
+
# loss=total_loss,
|
| 125 |
+
# logits=prediction_scores.argmax(2),
|
| 126 |
+
# ner_l
|
| 127 |
+
# hidden_states=outputs.hidden_states,
|
| 128 |
+
# attentions=outputs.attentions,
|
| 129 |
+
# )
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
class BertForPretrainWithKGV2(BertPreTrainedModel):
|
| 133 |
+
def __init__(self, config):
|
| 134 |
+
super().__init__(config)
|
| 135 |
+
self.num_labels = config.num_labels
|
| 136 |
+
self.config = config
|
| 137 |
+
self.bert = BertModel(config)
|
| 138 |
+
classifier_dropout = (
|
| 139 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 140 |
+
)
|
| 141 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 142 |
+
self.cls = BertOnlyMLMHead(config)
|
| 143 |
+
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, config.num_ner_labels) for _ in range(config.entity_type_num)])
|
| 144 |
+
self.mlp = MLPLayer(config)
|
| 145 |
+
self.sim = Similarity(0.05)
|
| 146 |
+
self.post_init()
|
| 147 |
+
|
| 148 |
+
def forward(
|
| 149 |
+
self,
|
| 150 |
+
input_ids=None,
|
| 151 |
+
attention_mask=None,
|
| 152 |
+
token_type_ids=None,
|
| 153 |
+
position_ids=None,
|
| 154 |
+
head_mask=None,
|
| 155 |
+
inputs_embeds=None,
|
| 156 |
+
encoder_hidden_states=None,
|
| 157 |
+
encoder_attention_mask=None,
|
| 158 |
+
labels=None,
|
| 159 |
+
ner_labels=None,
|
| 160 |
+
output_attentions=None,
|
| 161 |
+
output_hidden_states=None,
|
| 162 |
+
return_dict=None,
|
| 163 |
+
):
|
| 164 |
+
|
| 165 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 166 |
+
outputs = self.bert(
|
| 167 |
+
input_ids,
|
| 168 |
+
attention_mask=attention_mask,
|
| 169 |
+
token_type_ids=token_type_ids,
|
| 170 |
+
position_ids=position_ids,
|
| 171 |
+
head_mask=head_mask,
|
| 172 |
+
inputs_embeds=inputs_embeds,
|
| 173 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 174 |
+
encoder_attention_mask=encoder_attention_mask,
|
| 175 |
+
output_attentions=output_attentions,
|
| 176 |
+
output_hidden_states=output_hidden_states,
|
| 177 |
+
return_dict=return_dict,
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
sequence_output = outputs.last_hidden_state
|
| 181 |
+
# mlm
|
| 182 |
+
prediction_scores = self.cls(sequence_output)
|
| 183 |
+
# ner
|
| 184 |
+
sequence_output = self.dropout(sequence_output)
|
| 185 |
+
ner_logits = torch.stack([classifier(sequence_output) for classifier in self.classifiers]).movedim(1, 0)
|
| 186 |
+
|
| 187 |
+
# mlm
|
| 188 |
+
masked_lm_loss, ner_loss, total_loss = None, None, None
|
| 189 |
+
if labels is not None:
|
| 190 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
| 191 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
|
| 192 |
+
|
| 193 |
+
if ner_labels is not None:
|
| 194 |
+
loss_fct = CrossEntropyLoss()
|
| 195 |
+
active_logits = ner_logits.reshape(-1, self.config.num_ner_labels)
|
| 196 |
+
# padding 的label是-100
|
| 197 |
+
ner_loss = loss_fct(active_logits, ner_labels.view(-1))
|
| 198 |
+
|
| 199 |
+
if masked_lm_loss:
|
| 200 |
+
total_loss = masked_lm_loss
|
| 201 |
+
|
| 202 |
+
if ner_loss:
|
| 203 |
+
total_loss = total_loss + ner_loss
|
| 204 |
+
|
| 205 |
+
# 对比cls loss
|
| 206 |
+
# cls_hidden = outputs.pooler_output
|
| 207 |
+
cls_hidden = sequence_output[:, 0]
|
| 208 |
+
simcse_loss = self.simcse_unsup_loss2(cls_hidden)
|
| 209 |
+
if simcse_loss:
|
| 210 |
+
total_loss = total_loss + simcse_loss*10
|
| 211 |
+
|
| 212 |
+
ner_out = ner_logits.argmax(3)
|
| 213 |
+
return OrderedDict([
|
| 214 |
+
("loss", total_loss),
|
| 215 |
+
("mlm_loss", masked_lm_loss.unsqueeze(0)),
|
| 216 |
+
("ner_loss", ner_loss.unsqueeze(0)),
|
| 217 |
+
("logits", prediction_scores.argmax(2)),
|
| 218 |
+
("ner_logits", ner_out.view(ner_out.shape[0], -1)),
|
| 219 |
+
("simcse_loss", simcse_loss.unsqueeze(0))
|
| 220 |
+
])
|
| 221 |
+
|
| 222 |
+
def simcse_unsup_loss2(self, pooler_output):
|
| 223 |
+
pooler_output = pooler_output.view((-1, 2, pooler_output.size(-1)))
|
| 224 |
+
pooler_output = self.mlp(pooler_output)
|
| 225 |
+
z1, z2 = pooler_output[:, 0], pooler_output[:, 1]
|
| 226 |
+
cos_sim = self.sim(z1.unsqueeze(1), z2.unsqueeze(0))
|
| 227 |
+
labels = torch.arange(cos_sim.size(0)).long().to(pooler_output.device)
|
| 228 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 229 |
+
loss = loss_fct(cos_sim, labels)
|
| 230 |
+
return loss
|
| 231 |
+
|
| 232 |
+
@staticmethod
|
| 233 |
+
def simcse_unsup_loss(y_pred: "tensor") -> "tensor":
|
| 234 |
+
# 得到y_pred对应的label, [1, 0, 3, 2, ..., batch_size-1, batch_size-2]
|
| 235 |
+
y_true = torch.arange(y_pred.shape[0], device=y_pred.device)
|
| 236 |
+
y_true = (y_true - y_true % 2 * 2) + 1
|
| 237 |
+
# batch内两两计算相似度, 得到相似度矩阵(对角矩阵)
|
| 238 |
+
sim = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=-1)
|
| 239 |
+
# sim = torch.mm(y_pred, y_pred.transpose(0, 1))
|
| 240 |
+
# 将相似度矩阵对角线置为很小的值, 消除自身的影响
|
| 241 |
+
sim = sim - torch.eye(y_pred.shape[0], device=y_pred.device) * 1e12
|
| 242 |
+
# 相似度矩阵除以温度系数
|
| 243 |
+
sim = sim/0.05
|
| 244 |
+
# 计算相似度矩阵与y_true的交叉熵损失
|
| 245 |
+
loss = F.cross_entropy(sim, y_true)
|
| 246 |
+
print(loss)
|
| 247 |
+
return loss
|