Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,29 +1,3 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# import time
|
| 3 |
-
# import json
|
| 4 |
-
# import gradio as gr
|
| 5 |
-
# import torch
|
| 6 |
-
# import torchaudio
|
| 7 |
-
# import numpy as np
|
| 8 |
-
# from denoiser.demucs import Demucs
|
| 9 |
-
# from pydub import AudioSegment
|
| 10 |
-
|
| 11 |
-
# modelpath = './denoiser/master64.th'
|
| 12 |
-
|
| 13 |
-
# def transcribe(file_upload, microphone):
|
| 14 |
-
# file = microphone if microphone is not None else file_upload
|
| 15 |
-
# model = Demucs(hidden=64)
|
| 16 |
-
# state_dict = torch.load(modelpath, map_location='cpu')
|
| 17 |
-
# model.load_state_dict(state_dict)
|
| 18 |
-
# demucs = model
|
| 19 |
-
# x, sr = torchaudio.load(file)
|
| 20 |
-
# out = demucs(x[None])[0]
|
| 21 |
-
# out = out / max(out.abs().max().item(), 1)
|
| 22 |
-
# torchaudio.save('enhanced.wav', out, sr)
|
| 23 |
-
# enhanced = AudioSegment.from_wav('enhanced.wav') # 只有去完噪的需要降 bitrate 再做語音識別
|
| 24 |
-
# enhanced.export('enhanced.wav', format="wav", bitrate="256k")
|
| 25 |
-
# return "enhanced.wav"
|
| 26 |
-
|
| 27 |
import os
|
| 28 |
import time
|
| 29 |
import json
|
|
@@ -33,67 +7,93 @@ import torchaudio
|
|
| 33 |
import numpy as np
|
| 34 |
from denoiser.demucs import Demucs
|
| 35 |
from pydub import AudioSegment
|
| 36 |
-
import soundfile as sf
|
| 37 |
-
import librosa
|
| 38 |
|
| 39 |
modelpath = './denoiser/master64.th'
|
| 40 |
|
| 41 |
def transcribe(file_upload, microphone):
|
| 42 |
file = microphone if microphone is not None else file_upload
|
| 43 |
-
|
| 44 |
-
# 新增音訊預處理 → 統一格式
|
| 45 |
-
def preprocess_audio(path):
|
| 46 |
-
data, sr = sf.read(path)
|
| 47 |
-
|
| 48 |
-
# 如果是雙聲道 → 轉單聲道
|
| 49 |
-
if len(data.shape) > 1:
|
| 50 |
-
data = data.mean(axis=1)
|
| 51 |
-
|
| 52 |
-
# 如果不是 16kHz → 重採樣
|
| 53 |
-
if sr != 16000:
|
| 54 |
-
data = librosa.resample(data, orig_sr=sr, target_sr=16000)
|
| 55 |
-
sr = 16000
|
| 56 |
-
|
| 57 |
-
# 儲存為 WAV 供模型使用
|
| 58 |
-
sf.write("enhanced.wav", data, sr)
|
| 59 |
-
return "enhanced.wav"
|
| 60 |
-
|
| 61 |
-
# 如果是 MP3,先轉成 WAV 再處理
|
| 62 |
-
if file.lower().endswith(".mp3"):
|
| 63 |
-
audio = AudioSegment.from_file(file)
|
| 64 |
-
audio = audio.set_frame_rate(16000).set_channels(1) # 轉單聲道 + 16kHz
|
| 65 |
-
audio.export("enhanced.wav", format="wav")
|
| 66 |
-
file = "enhanced.wav"
|
| 67 |
-
else:
|
| 68 |
-
file = preprocess_audio(file)
|
| 69 |
-
|
| 70 |
model = Demucs(hidden=64)
|
| 71 |
state_dict = torch.load(modelpath, map_location='cpu')
|
| 72 |
model.load_state_dict(state_dict)
|
| 73 |
-
demucs = model
|
| 74 |
-
|
| 75 |
x, sr = torchaudio.load(file)
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
|
| 90 |
|
| 91 |
-
# 👇 加上這一行,解決 Gradio schema 推導錯誤
|
| 92 |
-
transcribe.__annotations__ = {
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
}
|
| 97 |
|
| 98 |
demo = gr.Interface(
|
| 99 |
fn=transcribe,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import time
|
| 3 |
import json
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
from denoiser.demucs import Demucs
|
| 9 |
from pydub import AudioSegment
|
|
|
|
|
|
|
| 10 |
|
| 11 |
modelpath = './denoiser/master64.th'
|
| 12 |
|
| 13 |
def transcribe(file_upload, microphone):
|
| 14 |
file = microphone if microphone is not None else file_upload
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
model = Demucs(hidden=64)
|
| 16 |
state_dict = torch.load(modelpath, map_location='cpu')
|
| 17 |
model.load_state_dict(state_dict)
|
| 18 |
+
demucs = model
|
|
|
|
| 19 |
x, sr = torchaudio.load(file)
|
| 20 |
+
out = demucs(x[None])[0]
|
| 21 |
+
out = out / max(out.abs().max().item(), 1)
|
| 22 |
+
torchaudio.save('enhanced.wav', out, sr)
|
| 23 |
+
enhanced = AudioSegment.from_wav('enhanced.wav') # 只有去完噪的需要降 bitrate 再做語音識別
|
| 24 |
+
enhanced.export('enhanced.wav', format="wav", bitrate="256k")
|
| 25 |
+
return "enhanced.wav"
|
| 26 |
|
| 27 |
+
# import os
|
| 28 |
+
# import time
|
| 29 |
+
# import json
|
| 30 |
+
# import gradio as gr
|
| 31 |
+
# import torch
|
| 32 |
+
# import torchaudio
|
| 33 |
+
# import numpy as np
|
| 34 |
+
# from denoiser.demucs import Demucs
|
| 35 |
+
# from pydub import AudioSegment
|
| 36 |
+
# import soundfile as sf
|
| 37 |
+
# import librosa
|
| 38 |
|
| 39 |
+
# modelpath = './denoiser/master64.th'
|
| 40 |
+
|
| 41 |
+
# def transcribe(file_upload, microphone):
|
| 42 |
+
# file = microphone if microphone is not None else file_upload
|
| 43 |
+
|
| 44 |
+
# # 新增音訊預處理 → 統一格式
|
| 45 |
+
# def preprocess_audio(path):
|
| 46 |
+
# data, sr = sf.read(path)
|
| 47 |
+
|
| 48 |
+
# # 如果是雙聲道 → 轉單聲道
|
| 49 |
+
# if len(data.shape) > 1:
|
| 50 |
+
# data = data.mean(axis=1)
|
| 51 |
+
|
| 52 |
+
# # 如果不是 16kHz → 重採樣
|
| 53 |
+
# if sr != 16000:
|
| 54 |
+
# data = librosa.resample(data, orig_sr=sr, target_sr=16000)
|
| 55 |
+
# sr = 16000
|
| 56 |
+
|
| 57 |
+
# # 儲存為 WAV 供模型使用
|
| 58 |
+
# sf.write("enhanced.wav", data, sr)
|
| 59 |
+
# return "enhanced.wav"
|
| 60 |
+
|
| 61 |
+
# # 如果是 MP3,先轉成 WAV 再處理
|
| 62 |
+
# if file.lower().endswith(".mp3"):
|
| 63 |
+
# audio = AudioSegment.from_file(file)
|
| 64 |
+
# audio = audio.set_frame_rate(16000).set_channels(1) # 轉單聲道 + 16kHz
|
| 65 |
+
# audio.export("enhanced.wav", format="wav")
|
| 66 |
+
# file = "enhanced.wav"
|
| 67 |
+
# else:
|
| 68 |
+
# file = preprocess_audio(file)
|
| 69 |
+
|
| 70 |
+
# model = Demucs(hidden=64)
|
| 71 |
+
# state_dict = torch.load(modelpath, map_location='cpu')
|
| 72 |
+
# model.load_state_dict(state_dict)
|
| 73 |
+
# demucs = model.eval()
|
| 74 |
+
|
| 75 |
+
# x, sr = torchaudio.load(file)
|
| 76 |
+
# x = x[0:1] # 強制取第一個聲道(確保是單聲道)
|
| 77 |
+
|
| 78 |
+
# with torch.no_grad():
|
| 79 |
+
# out = demucs(x[None])[0]
|
| 80 |
+
|
| 81 |
+
# out = out / max(out.abs().max().item(), 1)
|
| 82 |
+
# torchaudio.save('enhanced_final.wav', out, sr)
|
| 83 |
|
| 84 |
+
# # 輸出 WAV 格式給前端播放
|
| 85 |
+
# enhanced = AudioSegment.from_wav('enhanced_final.wav')
|
| 86 |
+
# enhanced.export('enhanced_final.mp3', format="mp3", bitrate="256k")
|
| 87 |
|
| 88 |
+
# return "enhanced_final.mp3" # 回傳 MP3 更省空間
|
| 89 |
|
| 90 |
|
| 91 |
+
# # 👇 加上這一行,解決 Gradio schema 推導錯誤
|
| 92 |
+
# transcribe.__annotations__ = {
|
| 93 |
+
# "file_upload": str,
|
| 94 |
+
# "microphone": str,
|
| 95 |
+
# "return": str
|
| 96 |
+
# }
|
| 97 |
|
| 98 |
demo = gr.Interface(
|
| 99 |
fn=transcribe,
|