TeluguBOT / main.py
Deepti-AI's picture
Update main.py
fcbfe7d verified
import os
os.environ["TRANSFORMERS_CACHE"] = "/app/.cache/transformers"
os.environ["HF_HOME"] = "/app/.cache/huggingface"
import uvicorn
from fastapi import FastAPI, File, UploadFile
from fastapi.responses import StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
import openai
from dotenv import load_dotenv
from sentence_transformers import SentenceTransformer
import math
from collections import Counter
import json
import pandas as pd
import asyncio
import numpy as np
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse
import openai as _openai_mod
import requests
import time
from fastapi import UploadFile, File
from starlette.responses import StreamingResponse
from pydub import AudioSegment
from openai import OpenAI
load_dotenv()
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
openai.api_key = os.getenv("OPENAI_API_KEY")
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/", response_class=HTMLResponse)
async def serve_html():
with open("templates/index.html", "r", encoding="utf-8") as f:
html_content = f.read()
return HTMLResponse(content=html_content)
chat_messages = [{"role": "system", "content": '''
Your task is to answer the user queries in **telugu language**(I mean telugu characters). You are Kammi, a friendly, medical assistant specializing in orthopedic surgery, human-like voice assistant built by Facile AI Solutions
You assist customers specifically with knee replacement surgery queries and you are the assistant of Dr.Sandeep, a highly experienced knee replacement surgeon.
Rules for your responses:
1. **Context-driven answers only**: Answer strictly based on the provided context and previous conversation history. Do not use external knowledge. Respond in **Telugu** language. The user only understands telugu not English.
2. **General conversation**: Engage in greetings and casual conversation. If the user mentions their name, greet them personally using their name
3. **Technical/medical queries**:
- If the question is relevant to knee replacement surgery and the answer is in the context or chat history, provide the answer.
- If the question is relevant but not present in the context, respond: "దయచేసి డాక్టర్ సందీప్ లేదా రిసెప్షన్ ను సంప్రదించండి."
- Translate medical and technical terms into simple, **understandable words in Telugu** wherever possible.
- The output must be in Telugu script, but common English medical or technical terms (like knee, hip, surgery, replacement, physiotherapy, arthritis, etc.) should be transliterated in Telugu.
Example:
“knee replacement” → మోకాలు రీప్లేస్‌మెంట్
“hip replacement” → హిప్ రీప్లేస్‌మెంట్
“surgery” → సర్జరీ
“physiotherapy” → ఫిజియోథెరపీ
Ensure the language sounds simple, natural, and conversational for Telugu-speaking patients.
4. **Irrelevant queries**:
- If the question is completely unrelated to knee replacement surgery, politely decline in Telugu: "నేను కేవలం మోకాలు రీప్లేస్‌మెంట్ సర్జరీ సంబంధిత ప్రశ్నలకు సహాయం చేస్తాను."
5. **Readable voice output**:
- Break sentences at natural punctuation: , . ? ! : ;
- Do not use #, **, or other markdown symbols.
Telugu Output Guidelines:
All numbers, decimals, and points MUST be fully spelled out in Telugu words.
Example: 2.5 lakh → రెండు లక్షల యాభై వేల రూపాయలు
6. **Concise and human-like**:
- Keep answers short, conversational, and natural
- Maximum 40 words / ~20 seconds of speech.
7. **Tone and style**:
- Helpful, friendly, approachable, and human-like.
- Maintain professionalism while being conversational.
8. **About Dr.Sandeep**:
- Over 5 years of experience in orthopedic and joint replacement surgery.
- Specializes in total and partial knee replacement procedures.
- Known for a patient-friendly approach, focusing on pre-surgery preparation, post-surgery rehabilitation, and pain management.
- Actively keeps up-to-date with the latest techniques and technologies in knee replacement surgery.
- Highly approachable and prefers that patients are well-informed about their treatment options and recovery process.
Always provide readable, streaming-friendly sentences in **Telugu** language so that output is read smoothly. Drive conversation forward while staying strictly on knee replacement surgery topics, and suggest follow-up questions for which you have context-based answers.
'''}]
class BM25:
def __init__(self, corpus, k1=1.2, b=0.75):
self.corpus = [doc.split() if isinstance(doc, str) else doc for doc in corpus]
self.k1 = k1
self.b = b
self.N = len(self.corpus)
self.avgdl = sum(len(doc) for doc in self.corpus) / self.N
self.doc_freqs = self._compute_doc_frequencies()
self.idf = self._compute_idf()
def _compute_doc_frequencies(self):
"""Count how many documents contain each term"""
df = {}
for doc in self.corpus:
unique_terms = set(doc)
for term in unique_terms:
df[term] = df.get(term, 0) + 1
return df
def _compute_idf(self):
"""Compute the IDF for each term in the corpus"""
idf = {}
for term, df in self.doc_freqs.items():
idf[term] = math.log((self.N - df + 0.5) / (df + 0.5) + 1)
return idf
def score(self, query, document):
"""Compute the BM25 score for one document and one query"""
query_terms = query.split() if isinstance(query, str) else query
doc_terms = document.split() if isinstance(document, str) else document
score = 0.0
freqs = Counter(doc_terms)
doc_len = len(doc_terms)
for term in query_terms:
if term not in freqs:
continue
f = freqs[term]
idf = self.idf.get(term, 0)
denom = f + self.k1 * (1 - self.b + self.b * doc_len / self.avgdl)
score += idf * (f * (self.k1 + 1)) / denom
return score
def rank(self, query):
"""Rank all documents for a given query"""
return [(i, self.score(query, doc)) for i, doc in enumerate(self.corpus)]
def sigmoid_scaled(x, midpoint=3.0):
"""
Sigmoid function with shifting.
`midpoint` controls where the output is 0.5.
"""
return 1 / (1 + math.exp(-(x - midpoint)))
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
async def compute_similarity(query: str, query_embedding: np.ndarray, chunk_text: str, chunk_embedding: np.ndarray, sem_weight: float,syn_weight:float,bm25) -> float:
semantic_score = cosine_similarity(query_embedding, chunk_embedding)
# syntactic_score = fuzz.ratio(query, chunk_text) / 100.0
syntactic_score = bm25.score(query,chunk_text)
final_syntactic_score = sigmoid_scaled(syntactic_score)
combined_score = sem_weight * semantic_score + syn_weight * final_syntactic_score
return combined_score
async def retrieve_top_k_hybrid(query, k, sem_weight,syn_weight,bm25):
emb_strt = time.time()
query_embedding = model.encode(query)
emb_end = time.time()
print("\n\nTime for Query Embedding", emb_end-emb_strt)
tasks = [
compute_similarity(query, query_embedding, row["Chunks"], row["Embeddings"] , sem_weight,syn_weight,bm25)
for _, row in df_expanded.iterrows()
]
similarities = await asyncio.gather(*tasks)
df_expanded["similarity"] = similarities
top_results = df_expanded.sort_values(by="similarity", ascending=False).head(k)
# print("the retrieved chunks are")
# print(top_results["telugu_chunk"].to_list()[0])
print("\n\nRetrieval Time", time.time() - emb_end)
return top_results["telugu_chunk"].to_list()
os.makedirs("/tmp/transformers_cache", exist_ok=True)
model = SentenceTransformer("abhinand/MedEmbed-large-v0.1")
df_expanded = pd.read_excel("Database.xlsx") # Replace with your filename
df_expanded["Embeddings"] = df_expanded["Embeddings"].map(lambda x: json.loads(x))
corpus = df_expanded['Chunks'].to_list()
bm25 = BM25(corpus)
# --- gTTS helper: stream raw audio file in small chunks ---
# def tts_chunk_stream(text_chunk: str, lang: str = "en"):
# if not text_chunk.strip():
# return []
# tts = gTTS(text=text_chunk, lang=lang)
# temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
# tts.save(temp_file.name)
# def audio_stream():
# try:
# with open(temp_file.name, "rb") as f:
# chunk = f.read(1024)
# while chunk:
# yield chunk
# chunk = f.read(1024)
# finally:
# try:
# os.remove(temp_file.name)
# except Exception:
# pass
# return audio_stream()
def tts_chunk_stream(text_chunk: str, lang: str = "en"):
"""
REST-based OpenAI TTS fallback for older openai SDKs (e.g. 0.28).
Returns a generator yielding MP3 byte chunks (1024 bytes).
"""
if not text_chunk or not text_chunk.strip():
return []
# Map short lang -> locale (extend if needed)
language_map = {
"en": "en-US",
"en-US": "en-US",
"en-GB": "en-GB",
"hi": "hi-IN",
}
language_code = language_map.get(lang, "en-GB")
# TTS model & voice choice
model = "gpt-4o-mini-tts" # or "tts-1"
voice = "alloy" # alloy, verse, shimmer, echo, coral
fmt = "mp3"
# Resolve API key (prefer openai.api_key if available)
api_key = None
try:
# if you set openai.api_key earlier in your code, prefer it
api_key = getattr(_openai_mod, "api_key", None)
except Exception:
api_key = None
if not api_key:
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
print("OpenAI API key not found. Set openai.api_key or env var OPENAI_API_KEY.")
return []
url = "https://api.openai.com/v1/audio/speech"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
payload = {
"model": model,
"voice": voice,
"input": text_chunk,
"format": fmt,
"temperature" : 0
# "instructions" : "speak in cheerfull and positive tone"
# optional: "language": language_code # include if needed by API variation
}
try:
# Use stream=True so we can yield bytes progressively.
resp = requests.post(url, headers=headers, json=payload, stream=True, timeout=60)
except Exception as e:
print("OpenAI TTS request failed:", e)
return []
if resp.status_code != 200:
# Try to show helpful error message
try:
err = resp.json()
except Exception:
err = resp.text
print(f"OpenAI TTS REST call failed {resp.status_code}: {err}")
try:
resp.close()
except Exception:
pass
return []
# At this point resp.iter_content yields raw mp3 bytes
def audio_stream():
try:
for chunk in resp.iter_content(chunk_size=1024):
if chunk:
yield chunk
finally:
try:
resp.close()
except Exception:
pass
return audio_stream()
async def get_rag_response(user_message_english: str, user_message_telugu: str):
global chat_messages
start_time = time.time()
Chunks = await retrieve_top_k_hybrid(user_message_english,15, 0.9, 0.1,bm25)
end_time = time.time()
# print(f"Retrieval start time : {start_time}")
# print(f"Retrieval end time : {end_time}")
# print(f"Retrieval duration is : {end_time - start_time}")
context = "======================================================================================================\n".join(map(str,Chunks))
chat_messages.append({"role": "user", "content": f'''
Context : {context}
User Query: {user_message_telugu}'''})
# print("chat_messages",chat_messages)
return [chat_messages[0]]+chat_messages[-7:]
# --- GPT + TTS async generator with smaller buffer like second code ---
async def gpt_tts_stream(prompt: str,telugu_text: str):
global chat_messages
chat_messages = await get_rag_response(prompt,telugu_text)
# print(chat_messages,"chat_messages after getting RAG response")
# response = openai.ChatCompletion.create(
# model="gpt-4o",
# messages= chat_messages,
# stream=True
# )
bot_response = ""
buffer = ""
buffer_size = 30
count1 = 0
count2 = 0
count3 = 0
count4 = 0
# ✅ Must use the `with` block for streaming
start_time = time.time()
with client.chat.completions.stream(
model="gpt-4o",
messages=chat_messages,
) as stream:
for event in stream:
if count1 == 0:
end_time = time.time()
# print(f"gpt call start time : {start_time}")
# print(f"gpt response start time : {end_time}")
print(f"gpt duration for first token : {end_time - start_time}")
count1 += 1
if event.type == "content.delta":
delta = event.delta
bot_response = bot_response + delta
buffer += delta
if len(buffer) >= buffer_size and buffer.endswith((".", "!", ",", "?", "\n", ";", ":")):
if count2 == 0:
count2 += 1
end_time = time.time()
# print(f"gpt response first buffer start time : {end_time}")
print(f"gpt duration for first buffer : {end_time - start_time}")
print(buffer)
# audio_chunks = tts_chunk_stream(buffer)
start_time = time.time()
for audio_chunk in tts_chunk_stream(buffer):
if count3 == 0:
count3+=1
end_time = time.time()
# print(f"tts start time : {start_time}")
# print(f"tts response first buffer start time : {end_time}")
print(f"tts duration for first buffer : {end_time - start_time}")
# print("chunk",buffer)
yield audio_chunk
buffer = ""
# audio_chunk = tts_chunk_stream(buffer)
# yield audio_chunk
# count+=1
elif event.type == "content.done":
# 🧾 model finished — flush whatever is left
if buffer.strip():
start_time = time.time()
# print(f"the final response time : {start_time}")
print(buffer.strip())
for audio_chunk in tts_chunk_stream(buffer):
# print("chunk",buffer)
yield audio_chunk
# buffer = ""
# audio_chunk = tts_chunk_stream(buffer)
start_time = time.time()
# print(f"the final audio time : {start_time}")
bot_response = bot_response.strip()
# print("the final bot response :")
# print(bot_response)
# print("full repsones is")
# print(fll_response)
chat_messages.append({"role": "assistant", "content": bot_response})
# def convert_to_mono16_wav_bytes(audio_bytes: bytes) -> tuple[bytes, int]:
# print("i am inside the mono16 conversion")
# """Convert any uploaded audio (mp3/webm/wav) to mono 16-bit WAV bytes in memory."""
# audio = AudioSegment.from_file(io.BytesIO(audio_bytes))
# # Convert to mono
# if audio.channels != 1:
# audio = audio.set_channels(1)
# # Convert to 16-bit PCM
# if audio.sample_width != 2:
# audio = audio.set_sample_width(2)
# # Standardize sample rate to 16 kHz (required by Google STT)
# if audio.frame_rate != 16000:
# audio = audio.set_frame_rate(16000)
# # Export as in-memory WAV bytes
# wav_buffer = io.BytesIO()
# audio.export(wav_buffer, format="wav")
# wav_bytes = wav_buffer.getvalue()
# print("mono 16 conversion done successfully")
# return wav_bytes, 16000
# ------------------------------------------------------------------
# 2️⃣ Telugu STT (Speech-to-Text)
# ------------------------------------------------------------------
# def transcribe_telugu_audio(audio_bytes: bytes) -> tuple[str, float]:
# print("i am inside the stt (telugu to telugu)")
# wav_bytes, sample_rate = convert_to_mono16_wav_bytes(audio_bytes)
# print("mono 16 conversion done successfully and fetched")
# client = speech.SpeechClient()
# print("clinet called successfully")
# audio = speech.RecognitionAudio(content=wav_bytes)
# print("audio created successfully")
# config = speech.RecognitionConfig(
# encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
# sample_rate_hertz=sample_rate,
# language_code="te-IN",
# enable_automatic_punctuation=True,
# )
# print("\n🔊 Transcribing Telugu audio...")
# start_time = time.time()
# response = client.recognize(config=config, audio=audio)
# telugu_text = " ".join(
# [result.alternatives[0].transcript for result in response.results]
# )
# stt_time = time.time() - start_time
# print(f"✅ Telugu STT completed in {stt_time:.2f} seconds")
# return telugu_text.strip(), stt_time
# ------------------------------------------------------------------
# 3️⃣ Telugu → English Translation
# ------------------------------------------------------------------
# def translate_to_english(te_text: str) -> tuple[str, float]:
# translate_client = translate.Client()
# print("\n🌐 Translating to English...")
# start_time = time.time()
# result = translate_client.translate(te_text, target_language="en")
# english_text = result["translatedText"]
# translation_time = time.time() - start_time
# print(f"✅ Translation completed in {translation_time:.2f} seconds")
# manoj
# return english_text, translation_time
@app.post("/chat_stream")
async def chat_stream(file: UploadFile = File(...)):
start_time = time.time()
audio_bytes = await file.read()
transcription = client.audio.transcriptions.create(
model="gpt-4o-transcribe", # or "gpt-4o-mini-transcribe"
file=(file.filename, audio_bytes), # important: (filename, bytes)
language="te",
prompt="Medical terms related to knee replacement surgery"
)
telugu_text = transcription.text
end_time = time.time()
# print(f"stt start time :{start_time}")
# print(f"stt end time : {end_time}")
print(f"transcription total time : {end_time-start_time}")
print(f"the text is : {telugu_text}")
start_time = time.time()
translation = client.responses.create(
model="gpt-4o-mini",
temperature = 0,
top_p = 0,
input=f''' your task is to Translate the following Telugu user query into English:
{telugu_text}
Give only the english translation, These queries are generally relevant to knee replacement surgery. Make sure you correct minor mistakes and return the user query in a proper english.''')
english_text = translation.output[0].content[0].text
end_time = time.time()
# print(f"translation start time :{start_time}")
# print(f"translation end time : {end_time}")
print(f"translation total time : {end_time-start_time}")
print(f"the english text is : {english_text}")
return StreamingResponse(gpt_tts_stream(english_text,telugu_text), media_type="audio/mpeg")
@app.post("/reset_chat")
async def reset_chat():
global chat_messages
chat_messages = [{"role": "system", "content": '''
Your task is to answer the user queries in **telugu language**(I mean telugu characters). You are Kammi, a friendly, medical assistant specializing in orthopedic surgery, human-like voice assistant built by Facile AI Solutions
You assist customers specifically with knee replacement surgery queries and you are the assistant of Dr.Sandeep, a highly experienced knee replacement surgeon.
Rules for your responses:
1. **Context-driven answers only**: Answer strictly based on the provided context and previous conversation history. Do not use external knowledge. Respond in **Telugu** language. The user only understands telugu not English.
2. **General conversation**: Engage in greetings and casual conversation. If the user mentions their name, greet them personally using their name
3. **Technical/medical queries**:
- If the question is relevant to knee replacement surgery and the answer is in the context or chat history, provide the answer.
- If the question is relevant but not present in the context, respond: "దయచేసి డాక్టర్ సందీప్ లేదా రిసెప్షన్ ను సంప్రదించండి."
- Translate medical and technical terms into simple, **understandable words in Telugu** wherever possible.
- The output must be in Telugu script, but common English medical or technical terms (like knee, hip, surgery, replacement, physiotherapy, arthritis, etc.) should be transliterated in Telugu.
Example:
“knee replacement” → మోకాలు రీప్లేస్‌మెంట్
“hip replacement” → హిప్ రీప్లేస్‌మెంట్
“surgery” → సర్జరీ
“physiotherapy” → ఫిజియోథెరపీ
Ensure the language sounds simple, natural, and conversational for Telugu-speaking patients.
4. **Irrelevant queries**:
- If the question is completely unrelated to knee replacement surgery, politely decline in Telugu: "నేను కేవలం మోకాలు రీప్లేస్‌మెంట్ సర్జరీ సంబంధిత ప్రశ్నలకు సహాయం చేస్తాను."
5. **Readable voice output**:
- Break sentences at natural punctuation: , . ? ! : ;
- Do not use #, **, or other markdown symbols.
Telugu Output Guidelines:
All numbers, decimals, and points MUST be fully spelled out in Telugu words.
Example: 2.5 lakh → రెండు లక్షల యాభై వేల రూపాయలు
6. **Concise and human-like**:
- Keep answers short, conversational, and natural
- Maximum 40 words / ~20 seconds of speech.
7. **Tone and style**:
- Helpful, friendly, approachable, and human-like.
- Maintain professionalism while being conversational.
8. **About Dr.Sandeep**:
- Over 5 years of experience in orthopedic and joint replacement surgery.
- Specializes in total and partial knee replacement procedures.
- Known for a patient-friendly approach, focusing on pre-surgery preparation, post-surgery rehabilitation, and pain management.
- Actively keeps up-to-date with the latest techniques and technologies in knee replacement surgery.
- Highly approachable and prefers that patients are well-informed about their treatment options and recovery process.
Always provide readable, streaming-friendly sentences in **Telugu** language so that output is read smoothly. Drive conversation forward while staying strictly on knee replacement surgery topics, and suggest follow-up questions for which you have context-based answers.
'''}]
return {"message": "Chat history reset successfully."}