Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| from diffusers import AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting, AutoencoderKL | |
| from diffusers.utils import load_image | |
| import torch | |
| from PIL import Image, ImageOps | |
| vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
| text_pipeline = AutoPipelineForText2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") | |
| text_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
| text_pipeline.set_ip_adapter_scale(0.6) | |
| image_pipeline = AutoPipelineForImage2Image.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") | |
| image_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
| image_pipeline.set_ip_adapter_scale(0.6) | |
| inpaint_pipeline = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", vae=vae, torch_dtype=torch.float16, variant="fp16", use_safetensors=True).to("cuda") | |
| inpaint_pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") | |
| inpaint_pipeline.set_ip_adapter_scale(0.6) | |
| def text_to_image(ip, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): | |
| text_pipeline.to("cuda") | |
| ip.thumbnail((1024, 1024)) | |
| text_pipeline.set_ip_adapter_scale(ip_scale) | |
| images = text_pipeline( | |
| prompt=prompt, | |
| ip_adapter_image=ip, | |
| negative_prompt=neg_prompt, | |
| width=width, | |
| height=height, | |
| strength=strength, | |
| guidance_scale=guidance, | |
| num_inference_steps=steps, | |
| ).images | |
| return images[0] | |
| def image_to_image(ip, image, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): | |
| image_pipeline.to("cuda") | |
| ip.thumbnail((1024, 1024)) | |
| image.thumbnail((1024, 1024)) | |
| image_pipeline.set_ip_adapter_scale(ip_scale) | |
| images = image_pipeline( | |
| prompt=prompt, | |
| image=image, | |
| ip_adapter_image=ip, | |
| negative_prompt=neg_prompt, | |
| width=width, | |
| height=height, | |
| strength=strength, | |
| guidance_scale=guidance, | |
| num_inference_steps=steps, | |
| ).images | |
| return images[0] | |
| def inpaint(ip, image_editor, prompt, neg_prompt, width, height, ip_scale, strength, guidance, steps): | |
| inpaint_pipeline.to("cuda") | |
| print(image_editor) | |
| image = image_editor['background'].convert('RGB') | |
| mask = Image.new("RGBA", image_editor["layers"][0].size, "WHITE") | |
| mask.paste(image_editor["layers"][0], (0, 0), image_editor["layers"][0]) | |
| mask = ImageOps.invert(mask.convert('L')) | |
| ip.thumbnail((1024, 1024)) | |
| image.thumbnail((1024, 1024)) | |
| mask.thumbnail((1024, 1024)) | |
| inpaint_pipeline.set_ip_adapter_scale(ip_scale) | |
| images = inpaint_pipeline( | |
| prompt=prompt, | |
| image=image, | |
| mask_image=mask, | |
| ip_adapter_image=ip, | |
| negative_prompt=neg_prompt, | |
| width=width, | |
| height=height, | |
| strength=strength, | |
| guidance_scale=guidance, | |
| num_inference_steps=steps, | |
| ).images | |
| return images[0] | |
| with gr.Blocks() as demo: | |
| gr.Markdown(""" """) | |
| with gr.Row(): | |
| with gr.Tab("Text-to-Image"): | |
| text_ip = gr.Image(label='IP-Adapter Image', type='pil') | |
| text_prompt = gr.Textbox(label='Prompt') | |
| text_button = gr.Button("Generate") | |
| with gr.Tab("Image-to-Image"): | |
| image_ip = gr.Image(label='IP-Adapter Image', type='pil') | |
| image_image = gr.Image(label='Image', type='pil') | |
| image_prompt = gr.Textbox(label='Prompt') | |
| image_button = gr.Button("Generate") | |
| with gr.Tab("Inpainting"): | |
| inpaint_ip = gr.Image(label='IP-Adapter Image', type='pil') | |
| inpaint_editor = gr.ImageMask(type='pil') | |
| inpaint_prompt = gr.Textbox(label='Prompt') | |
| inpaint_button = gr.Button("Generate") | |
| output_image = gr.Image(label='Result') | |
| with gr.Accordion("Advanced Settings", open=True): | |
| neg_prompt = gr.Textbox(label='Negative Prompt', value='ugly, deformed, nsfw') | |
| width_slider = gr.Slider(256, 1024, value=1024, step=8, label="Width") | |
| height_slider = gr.Slider(256, 1024, value=1024, step=8, label="Height") | |
| ip_scale_slider = gr.Slider(0.0, 3.0, value=0.8, label="IP-Adapter Scale") | |
| strength_slider = gr.Slider(0.0, 1.0, value=0.7, label="Strength") | |
| guidance_slider = gr.Slider(1.0, 15.0, value=7.5, label="Guidance") | |
| steps_slider = gr.Slider(50, 100, value=75, step=1, label="Steps") | |
| gr.Examples( | |
| [["./images/img1.jpg", "Paris Hilton", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]], | |
| [text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], | |
| output_image, | |
| text_to_image, | |
| cache_examples='lazy', | |
| label='Text-to-Image Example' | |
| ) | |
| gr.Examples( | |
| [["./images/img1.jpg", "./images/tony.jpg", "photo", "ugly, deformed, nsfw", 1024, 1024, 0.8, 0.7, 7.5, 75]], | |
| [image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], | |
| output_image, | |
| image_to_image, | |
| cache_examples='lazy', | |
| label='Image-to-Image Example' | |
| ) | |
| text_button.click(text_to_image, inputs=[text_ip, text_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) | |
| image_button.click(image_to_image, inputs=[image_ip, image_image, image_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) | |
| inpaint_button.click(inpaint, inputs=[inpaint_ip, inpaint_editor, inpaint_prompt, neg_prompt, width_slider, height_slider, ip_scale_slider, strength_slider, guidance_slider, steps_slider], outputs=output_image) | |
| demo.launch() |