Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 3 |
+
from diffusers import UniPCMultistepScheduler
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cv2
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
# App title and config
|
| 11 |
+
st.set_page_config(
|
| 12 |
+
page_title="AI Image Generator with ControlNet",
|
| 13 |
+
page_icon="🎨",
|
| 14 |
+
layout="wide",
|
| 15 |
+
initial_sidebar_state="expanded"
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# Custom CSS for styling
|
| 19 |
+
st.markdown("""
|
| 20 |
+
<style>
|
| 21 |
+
.main {
|
| 22 |
+
background-color: #f5f5f5;
|
| 23 |
+
}
|
| 24 |
+
.stButton>button {
|
| 25 |
+
background-color: #4CAF50;
|
| 26 |
+
color: white;
|
| 27 |
+
border-radius: 8px;
|
| 28 |
+
padding: 10px 24px;
|
| 29 |
+
font-weight: bold;
|
| 30 |
+
}
|
| 31 |
+
.stButton>button:hover {
|
| 32 |
+
background-color: #45a049;
|
| 33 |
+
}
|
| 34 |
+
.stSelectbox, .stSlider, .stTextInput {
|
| 35 |
+
margin-bottom: 20px;
|
| 36 |
+
}
|
| 37 |
+
.header {
|
| 38 |
+
color: #4CAF50;
|
| 39 |
+
text-align: center;
|
| 40 |
+
}
|
| 41 |
+
.footer {
|
| 42 |
+
text-align: center;
|
| 43 |
+
margin-top: 30px;
|
| 44 |
+
color: #777;
|
| 45 |
+
font-size: 0.9em;
|
| 46 |
+
}
|
| 47 |
+
.image-container {
|
| 48 |
+
display: flex;
|
| 49 |
+
justify-content: space-around;
|
| 50 |
+
flex-wrap: wrap;
|
| 51 |
+
gap: 20px;
|
| 52 |
+
margin-top: 20px;
|
| 53 |
+
}
|
| 54 |
+
.image-card {
|
| 55 |
+
border-radius: 10px;
|
| 56 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
| 57 |
+
padding: 15px;
|
| 58 |
+
background: white;
|
| 59 |
+
}
|
| 60 |
+
</style>
|
| 61 |
+
""", unsafe_allow_html=True)
|
| 62 |
+
|
| 63 |
+
# Header
|
| 64 |
+
st.markdown("<h1 class='header'>🎨 AI Image Generator with ControlNet</h1>", unsafe_allow_html=True)
|
| 65 |
+
st.markdown("Generate stunning images guided by Stable Diffusion and ControlNet. Upload a reference image or use edge detection to control the output.")
|
| 66 |
+
|
| 67 |
+
# Sidebar for controls
|
| 68 |
+
with st.sidebar:
|
| 69 |
+
st.image("https://huggingface.co/front/assets/huggingface_logo-noborder.svg", width=200)
|
| 70 |
+
st.markdown("### Configuration")
|
| 71 |
+
|
| 72 |
+
# Model selection
|
| 73 |
+
model_choice = st.selectbox(
|
| 74 |
+
"Select ControlNet Type",
|
| 75 |
+
("Canny Edge", "Depth Map", "OpenPose (Human Pose)"),
|
| 76 |
+
index=0
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
# Parameters
|
| 80 |
+
prompt = st.text_area("Prompt", "a beautiful landscape with mountains and lake, highly detailed, digital art")
|
| 81 |
+
negative_prompt = st.text_area("Negative Prompt", "blurry, low quality, distorted")
|
| 82 |
+
num_images = st.slider("Number of images to generate", 1, 4, 1)
|
| 83 |
+
steps = st.slider("Number of inference steps", 20, 100, 50)
|
| 84 |
+
guidance_scale = st.slider("Guidance scale", 1.0, 20.0, 7.5)
|
| 85 |
+
seed = st.number_input("Seed", value=42, min_value=0, max_value=1000000)
|
| 86 |
+
|
| 87 |
+
# Upload control image
|
| 88 |
+
uploaded_file = st.file_uploader("Upload control image", type=["jpg", "png", "jpeg"])
|
| 89 |
+
|
| 90 |
+
# Advanced options
|
| 91 |
+
with st.expander("Advanced Options"):
|
| 92 |
+
strength = st.slider("Control strength", 0.1, 2.0, 1.0)
|
| 93 |
+
low_threshold = st.slider("Canny low threshold", 1, 255, 100)
|
| 94 |
+
high_threshold = st.slider("Canny high threshold", 1, 255, 200)
|
| 95 |
+
|
| 96 |
+
# Initialize models (cached)
|
| 97 |
+
@st.cache_resource
|
| 98 |
+
def load_models(model_type):
|
| 99 |
+
if model_type == "Canny Edge":
|
| 100 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 101 |
+
"lllyasviel/sd-controlnet-canny",
|
| 102 |
+
torch_dtype=torch.float16
|
| 103 |
+
)
|
| 104 |
+
elif model_type == "Depth Map":
|
| 105 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 106 |
+
"lllyasviel/sd-controlnet-depth",
|
| 107 |
+
torch_dtype=torch.float16
|
| 108 |
+
)
|
| 109 |
+
else: # OpenPose
|
| 110 |
+
controlnet = ControlNetModel.from_pretrained(
|
| 111 |
+
"lllyasviel/sd-controlnet-openpose",
|
| 112 |
+
torch_dtype=torch.float16
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 116 |
+
"runwayml/stable-diffusion-v1-5",
|
| 117 |
+
controlnet=controlnet,
|
| 118 |
+
torch_dtype=torch.float16,
|
| 119 |
+
safety_checker=None
|
| 120 |
+
).to("cuda")
|
| 121 |
+
|
| 122 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 123 |
+
pipe.enable_model_cpu_offload()
|
| 124 |
+
return pipe
|
| 125 |
+
|
| 126 |
+
# Process control image based on model type
|
| 127 |
+
def process_control_image(image, model_type):
|
| 128 |
+
image = np.array(image)
|
| 129 |
+
|
| 130 |
+
if model_type == "Canny Edge":
|
| 131 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 132 |
+
image = image[:, :, None]
|
| 133 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 134 |
+
elif model_type == "Depth Map":
|
| 135 |
+
# Using MiDaS for depth estimation - would need additional imports
|
| 136 |
+
# This is simplified for demo purposes
|
| 137 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
| 138 |
+
image = np.stack([image]*3, axis=-1)
|
| 139 |
+
else: # OpenPose
|
| 140 |
+
# Would need OpenPose processing - simplified for demo
|
| 141 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 142 |
+
|
| 143 |
+
return Image.fromarray(image)
|
| 144 |
+
|
| 145 |
+
# Main content
|
| 146 |
+
col1, col2 = st.columns([1, 1])
|
| 147 |
+
|
| 148 |
+
with col1:
|
| 149 |
+
st.markdown("### Control Image")
|
| 150 |
+
if uploaded_file is not None:
|
| 151 |
+
control_image = Image.open(uploaded_file)
|
| 152 |
+
processed_image = process_control_image(control_image, model_choice)
|
| 153 |
+
st.image(processed_image, caption="Processed Control Image", use_column_width=True)
|
| 154 |
+
else:
|
| 155 |
+
st.info("Please upload an image to use as control")
|
| 156 |
+
|
| 157 |
+
with col2:
|
| 158 |
+
st.markdown("### Generated Images")
|
| 159 |
+
if st.button("Generate Images"):
|
| 160 |
+
if uploaded_file is None:
|
| 161 |
+
st.warning("Please upload a control image first")
|
| 162 |
+
else:
|
| 163 |
+
with st.spinner("Generating images... Please wait"):
|
| 164 |
+
start_time = time.time()
|
| 165 |
+
|
| 166 |
+
# Load models
|
| 167 |
+
pipe = load_models(model_choice)
|
| 168 |
+
|
| 169 |
+
# Generator for reproducibility
|
| 170 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 171 |
+
|
| 172 |
+
# Generate images
|
| 173 |
+
images = pipe(
|
| 174 |
+
[prompt] * num_images,
|
| 175 |
+
negative_prompt=[negative_prompt] * num_images,
|
| 176 |
+
image=processed_image,
|
| 177 |
+
num_inference_steps=steps,
|
| 178 |
+
generator=generator,
|
| 179 |
+
guidance_scale=guidance_scale,
|
| 180 |
+
controlnet_conditioning_scale=strength
|
| 181 |
+
).images
|
| 182 |
+
|
| 183 |
+
# Display results
|
| 184 |
+
st.markdown(f"<div class='image-container'>", unsafe_allow_html=True)
|
| 185 |
+
for i, img in enumerate(images):
|
| 186 |
+
st.image(img, caption=f"Image {i+1}", use_column_width=True)
|
| 187 |
+
st.markdown("</div>", unsafe_allow_html=True)
|
| 188 |
+
|
| 189 |
+
# Show performance info
|
| 190 |
+
end_time = time.time()
|
| 191 |
+
st.success(f"Generated {num_images} images in {end_time - start_time:.2f} seconds")
|
| 192 |
+
|
| 193 |
+
# Footer
|
| 194 |
+
st.markdown("""
|
| 195 |
+
<div class='footer'>
|
| 196 |
+
<p>Powered by Stable Diffusion and ControlNet | Deployed on Hugging Face Spaces</p>
|
| 197 |
+
</div>
|
| 198 |
+
""", unsafe_allow_html=True)
|