File size: 40,256 Bytes
3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc 3e1d0f5 92a25bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 |
import os
import time
import json
import hashlib
from datetime import datetime, timedelta
from typing import List, Dict, Generator, Optional, Any, Tuple
from dataclasses import dataclass, field, asdict
from functools import wraps, lru_cache
from contextlib import contextmanager
from collections import deque, defaultdict
import threading
from concurrent.futures import ThreadPoolExecutor
from dotenv import load_dotenv
from groq import Groq
import groq
from config import logger, AppConfig, ReasoningMode, ModelConfig
class ResponseCache:
"""Thread-safe LRU cache for API responses"""
def __init__(self, maxsize: int = 100, ttl: int = 3600):
self.cache: Dict[str, Tuple[Any, float]] = {}
self.maxsize = maxsize
self.ttl = ttl
self.lock = threading.Lock()
self.hits = 0
self.misses = 0
def get(self, key: str) -> Optional[Any]:
"""Get cached value if not expired"""
with self.lock:
if key in self.cache:
value, timestamp = self.cache[key]
if time.time() - timestamp < self.ttl:
self.hits += 1
logger.debug(f"Cache hit for key: {key[:20]}...")
return value
else:
del self.cache[key]
self.misses += 1
return None
def set(self, key: str, value: Any) -> None:
"""Set cached value with timestamp"""
with self.lock:
if len(self.cache) >= self.maxsize:
oldest_key = min(self.cache.keys(), key=lambda k: self.cache[k][1])
del self.cache[oldest_key]
self.cache[key] = (value, time.time())
logger.debug(f"Cached response for key: {key[:20]}...")
def clear(self) -> None:
"""Clear cache"""
with self.lock:
self.cache.clear()
self.hits = 0
self.misses = 0
logger.info("Cache cleared")
def get_stats(self) -> Dict[str, int]:
"""Get cache statistics"""
with self.lock:
total = self.hits + self.misses
hit_rate = (self.hits / total * 100) if total > 0 else 0
return {
"hits": self.hits,
"misses": self.misses,
"hit_rate": round(hit_rate, 2),
"size": len(self.cache)
}
class RateLimiter:
"""Token bucket rate limiter"""
def __init__(self, max_requests: int = 50, window: int = 60):
self.max_requests = max_requests
self.window = window
self.requests = deque()
self.lock = threading.Lock()
def is_allowed(self) -> Tuple[bool, Optional[float]]:
"""Check if request is allowed"""
with self.lock:
now = time.time()
while self.requests and self.requests[0] < now - self.window:
self.requests.popleft()
if len(self.requests) < self.max_requests:
self.requests.append(now)
return True, None
else:
wait_time = self.window - (now - self.requests[0])
return False, wait_time
def reset(self) -> None:
"""Reset rate limiter"""
with self.lock:
self.requests.clear()
@dataclass
class ConversationMetrics:
"""Enhanced metrics with thread-safe operations"""
reasoning_depth: int = 0
self_corrections: int = 0
confidence_score: float = 0.0
inference_time: float = 0.0
tokens_used: int = 0
tokens_per_second: float = 0.0
reasoning_paths_explored: int = 0
total_conversations: int = 0
avg_response_time: float = 0.0
cache_hits: int = 0
cache_misses: int = 0
error_count: int = 0
retry_count: int = 0
last_updated: str = field(default_factory=lambda: datetime.now().strftime("%H:%M:%S"))
session_start: str = field(default_factory=lambda: datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
model_switches: int = 0
mode_switches: int = 0
peak_tokens: int = 0
total_latency: float = 0.0
_lock: threading.Lock = field(default_factory=threading.Lock, init=False, repr=False)
def update_confidence(self) -> None:
"""Calculate confidence based on multiple factors"""
with self._lock:
depth_score = min(30, self.reasoning_depth * 5)
correction_score = min(20, self.self_corrections * 10)
speed_score = min(25, 25 / max(1, self.avg_response_time))
consistency_score = 25
self.confidence_score = min(95.0, depth_score + correction_score + speed_score + consistency_score)
def update_tokens_per_second(self, tokens: int, time_taken: float) -> None:
"""Calculate tokens per second"""
with self._lock:
if time_taken > 0:
self.tokens_per_second = tokens / time_taken
def increment_field(self, field_name: str, value: Any = 1) -> None:
"""Thread-safe field increment"""
with self._lock:
current = getattr(self, field_name)
setattr(self, field_name, current + value)
def set_field(self, field_name: str, value: Any) -> None:
"""Thread-safe field setter"""
with self._lock:
setattr(self, field_name, value)
def reset(self) -> None:
"""Reset metrics for new session"""
with self._lock:
self.__init__()
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary"""
with self._lock:
data = asdict(self)
data.pop('_lock', None)
return data
@dataclass
class ConversationEntry:
"""Enhanced conversation entry with metadata"""
timestamp: str
user_message: str
ai_response: str
model: str
reasoning_mode: str
inference_time: float
tokens: int
feedback: str = ""
tags: List[str] = field(default_factory=list)
rating: Optional[int] = None
session_id: str = ""
conversation_id: str = ""
parent_id: Optional[str] = None
temperature: float = 0.7
max_tokens: int = 4000
cache_hit: bool = False
error_occurred: bool = False
retry_count: int = 0
tokens_per_second: float = 0.0
def __post_init__(self):
"""Generate unique IDs"""
if not self.conversation_id:
self.conversation_id = self._generate_id()
def _generate_id(self) -> str:
"""Generate unique conversation ID"""
content = f"{self.timestamp}{self.user_message[:100]}"
return hashlib.md5(content.encode()).hexdigest()[:12]
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary with sanitization"""
return asdict(self)
@classmethod
def from_dict(cls, data: Dict[str, Any]) -> 'ConversationEntry':
"""Create instance from dictionary"""
return cls(**data)
def add_tag(self, tag: str) -> None:
"""Add tag to conversation"""
if tag not in self.tags:
self.tags.append(tag)
def set_rating(self, rating: int) -> None:
"""Set user rating (1-5)"""
if 1 <= rating <= 5:
self.rating = rating
def error_handler(func):
"""Enhanced error handling decorator for generator functions"""
@wraps(func)
def wrapper(*args, **kwargs):
max_retries = AppConfig.MAX_RETRIES
retry_delay = AppConfig.RETRY_DELAY
for attempt in range(max_retries):
try:
# Check if function is a generator
result = func(*args, **kwargs)
if hasattr(result, '__iter__') and hasattr(result, '__next__'):
# It's a generator, yield from it
yield from result
else:
# Regular function, return result
return result
return # Exit after successful completion
except groq.APIConnectionError as e:
error_msg = f"🔌 **Connection Error**: Cannot reach Groq API.\n\n"
error_msg += "Please check your internet connection and try again."
logger.error(f"API Connection Error in {func.__name__}: {str(e)}")
except groq.RateLimitError as e:
error_msg = f"⏱️ **Rate Limit Exceeded**: Too many requests.\n\n"
error_msg += "Please wait a moment and try again."
logger.error(f"Rate Limit Error in {func.__name__}: {str(e)}")
except groq.AuthenticationError as e:
error_msg = f"🔐 **Authentication Error**: Invalid API key.\n\n"
error_msg += "Please verify your GROQ_API_KEY in the .env file."
logger.error(f"Authentication Error in {func.__name__}: {str(e)}")
yield error_msg
return # Don't retry authentication errors
except groq.APIStatusError as e:
error_msg = f"⚠️ **API Error** (Status {e.status_code}):\n\n"
error_msg += f"{str(e)}\n\nPlease try again or select a different model."
logger.error(f"API Status Error in {func.__name__}: {str(e)}")
except Exception as e:
error_msg = f"❌ **System Error**: {str(e)}\n\n"
error_msg += "Please try again or contact support if the issue persists."
logger.error(f"Unexpected error in {func.__name__}: {str(e)}", exc_info=True)
if attempt < max_retries - 1:
logger.info(f"Retrying in {retry_delay}s... (attempt {attempt+1}/{max_retries})")
time.sleep(retry_delay)
retry_delay *= 2
else:
yield error_msg
return
return wrapper
@contextmanager
def timer(operation: str = "Operation"):
"""Enhanced context manager for timing operations"""
start = time.time()
logger.info(f"Starting: {operation}")
try:
yield
finally:
duration = time.time() - start
logger.info(f"Completed: {operation} in {duration:.3f}s")
def validate_input(text: str, max_length: int = 10000) -> Tuple[bool, Optional[str]]:
"""Validate user input"""
if not text or not text.strip():
return False, "Input cannot be empty"
if len(text) > max_length:
return False, f"Input too long (max {max_length} characters)"
suspicious_patterns = ["<script", "javascript:", "onerror=", "onclick="]
text_lower = text.lower()
for pattern in suspicious_patterns:
if pattern in text_lower:
return False, "Input contains potentially unsafe content"
return True, None
class GroqClientManager:
"""Enhanced singleton manager for Groq client"""
_instance: Optional[Groq] = None
_lock = threading.Lock()
_initialized = False
_health_check_time: Optional[float] = None
_health_check_interval = 300
@classmethod
def get_client(cls) -> Groq:
"""Get or create Groq client instance with health check"""
if cls._instance is None:
with cls._lock:
if cls._instance is None:
cls._initialize_client()
if cls._should_health_check():
cls._perform_health_check()
return cls._instance
@classmethod
def _initialize_client(cls) -> None:
"""Initialize Groq client"""
load_dotenv()
api_key = os.environ.get("GROQ_API_KEY")
if not api_key:
logger.error("GROQ_API_KEY not found in environment")
raise ValueError("GROQ_API_KEY not found. Please set it in your .env file.")
try:
cls._instance = Groq(api_key=api_key, timeout=AppConfig.REQUEST_TIMEOUT)
cls._initialized = True
cls._health_check_time = time.time()
logger.info("Groq client initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Groq client: {e}")
raise
@classmethod
def _should_health_check(cls) -> bool:
"""Check if health check is needed"""
if not cls._health_check_time:
return True
return time.time() - cls._health_check_time > cls._health_check_interval
@classmethod
def _perform_health_check(cls) -> None:
"""Perform health check on client"""
try:
if cls._instance:
cls._health_check_time = time.time()
logger.debug("Health check passed")
except Exception as e:
logger.warning(f"Health check failed: {e}")
cls._instance = None
cls._initialized = False
class PromptEngine:
"""Enhanced centralized prompt management"""
SYSTEM_PROMPTS = {
ReasoningMode.TREE_OF_THOUGHTS: """You are an advanced reasoning system using Tree of Thoughts methodology.
Explore multiple reasoning paths systematically before converging on the best solution.
Always show your thought process explicitly.""",
ReasoningMode.CHAIN_OF_THOUGHT: """You are a systematic problem solver using Chain of Thought reasoning.
Break down complex problems into clear, logical steps with explicit reasoning.""",
ReasoningMode.SELF_CONSISTENCY: """You are a consistency-focused reasoning system.
Generate multiple independent solutions and identify the most consistent answer.""",
ReasoningMode.REFLEXION: """You are a self-reflective AI system.
Solve problems, critique your own reasoning, and refine your solutions iteratively.""",
ReasoningMode.DEBATE: """You are a multi-agent debate system.
Present multiple perspectives and synthesize the strongest arguments.""",
ReasoningMode.ANALOGICAL: """You are an analogical reasoning system.
Find similar problems and apply their solutions."""
}
TEMPLATES = {
"Code Review": {
"prompt": "Analyze the following code for bugs, performance issues, and best practices:\n\n{query}",
"context": "code_analysis"
},
"Research Summary": {
"prompt": "Provide a comprehensive research summary on:\n\n{query}\n\nInclude key findings, methodologies, and implications.",
"context": "research"
},
"Problem Solving": {
"prompt": "Solve this problem step-by-step with detailed explanations:\n\n{query}",
"context": "problem_solving"
},
"Creative Writing": {
"prompt": "Generate creative content based on:\n\n{query}\n\nBe imaginative and engaging.",
"context": "creative"
},
"Data Analysis": {
"prompt": "Analyze this data/scenario and provide insights:\n\n{query}",
"context": "analysis"
},
"Debugging": {
"prompt": "Debug this code/issue systematically:\n\n{query}",
"context": "debugging"
},
"Custom": {
"prompt": "{query}",
"context": "general"
}
}
REASONING_PROMPTS = {
ReasoningMode.TREE_OF_THOUGHTS: """
**Tree of Thoughts Analysis**
Problem: {query}
**Exploration Phase:**
PATH A (Analytical): [Examine from first principles]
PATH B (Alternative): [Consider different angle]
PATH C (Synthesis): [Integrate insights]
**Evaluation Phase:**
- Assess each path's validity
- Identify strongest reasoning chain
- Converge on optimal solution
**Final Solution:** [Most robust answer with justification]""",
ReasoningMode.CHAIN_OF_THOUGHT: """
**Step-by-Step Reasoning**
Problem: {query}
Step 1: Understand the question
Step 2: Identify key components
Step 3: Apply relevant logic/principles
Step 4: Derive solution
Step 5: Validate and verify
Final Answer: [Clear, justified conclusion]""",
ReasoningMode.SELF_CONSISTENCY: """
**Multi-Path Consistency Check**
Problem: {query}
**Attempt 1:** [First independent solution]
**Attempt 2:** [Alternative approach]
**Attempt 3:** [Third perspective]
**Consensus:** [Most consistent answer across attempts]""",
ReasoningMode.REFLEXION: """
**Reflexion with Self-Correction**
Problem: {query}
**Initial Solution:** [First attempt]
**Self-Critique:**
- Assumptions made?
- Logical flaws?
- Missing elements?
**Refined Solution:** [Improved answer based on reflection]""",
ReasoningMode.DEBATE: """
**Multi-Agent Debate**
Problem: {query}
**Position A:** [Strongest case for one approach]
**Position B:** [Critical examination]
**Synthesis:** [Balanced conclusion]""",
ReasoningMode.ANALOGICAL: """
**Analogical Reasoning**
Problem: {query}
**Similar Problems:** [Identify analogous situations]
**Solution Transfer:** [Adapt known solutions]
**Final Answer:** [Solution derived from analogy]"""
}
@classmethod
def build_prompt(cls, query: str, mode: ReasoningMode, template: str) -> str:
"""Build enhanced reasoning prompt"""
template_data = cls.TEMPLATES.get(template, cls.TEMPLATES["Custom"])
formatted_query = template_data["prompt"].format(query=query)
return cls.REASONING_PROMPTS[mode].format(query=formatted_query)
@classmethod
def build_critique_prompt(cls) -> str:
"""Build validation prompt for self-critique"""
return """
**Validation Check:**
Review the previous response for:
1. Factual accuracy
2. Logical consistency
3. Completeness
4. Potential biases or errors
Provide brief validation or corrections if needed."""
@classmethod
def get_template_context(cls, template: str) -> str:
"""Get context for template"""
return cls.TEMPLATES.get(template, {}).get("context", "general")
class ConversationExporter:
"""Enhanced conversation export with multiple formats including PDF"""
@staticmethod
def to_json(entries: List[ConversationEntry], pretty: bool = True) -> str:
"""Export to JSON format"""
data = [entry.to_dict() for entry in entries]
indent = 2 if pretty else None
return json.dumps(data, indent=indent, ensure_ascii=False)
@staticmethod
def to_markdown(entries: List[ConversationEntry], include_metadata: bool = True) -> str:
"""Export to Markdown format"""
md = "# Conversation History\n\n"
md += f"*Exported on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}*\n\n"
md += "---\n\n"
for i, entry in enumerate(entries, 1):
md += f"## Conversation {i}\n\n"
md += f"**Timestamp:** {entry.timestamp} \n"
md += f"**Model:** {entry.model} \n"
md += f"**Mode:** {entry.reasoning_mode} \n"
md += f"**Performance:** {entry.inference_time:.2f}s | {entry.tokens} tokens\n\n"
md += f"### User\n\n{entry.user_message}\n\n"
md += f"### Assistant\n\n{entry.ai_response}\n\n"
md += "---\n\n"
return md
@staticmethod
def to_text(entries: List[ConversationEntry]) -> str:
"""Export to plain text format"""
txt = "="*70 + "\n"
txt += "CONVERSATION HISTORY\n"
txt += f"Exported: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
txt += "="*70 + "\n\n"
for i, entry in enumerate(entries, 1):
txt += f"Conversation {i}\n"
txt += f"Time: {entry.timestamp}\n"
txt += f"Model: {entry.model} | Mode: {entry.reasoning_mode}\n"
txt += f"Performance: {entry.inference_time:.2f}s | {entry.tokens} tokens\n"
txt += "\n"
txt += f"USER:\n{entry.user_message}\n\n"
txt += f"ASSISTANT:\n{entry.ai_response}\n"
txt += "\n" + "-"*70 + "\n\n"
return txt
@staticmethod
def to_pdf(entries: List[ConversationEntry], filename: str) -> str:
"""Export to PDF format with memory optimization"""
try:
from reportlab.lib.pagesizes import letter
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.enums import TA_LEFT, TA_CENTER
from reportlab.lib.colors import HexColor
doc = SimpleDocTemplate(filename, pagesize=letter)
story = []
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
textColor=HexColor('#667eea'),
spaceAfter=30,
alignment=TA_CENTER
)
heading_style = ParagraphStyle(
'CustomHeading',
parent=styles['Heading2'],
fontSize=14,
textColor=HexColor('#764ba2'),
spaceAfter=12,
spaceBefore=12
)
user_style = ParagraphStyle(
'UserStyle',
parent=styles['Normal'],
fontSize=11,
textColor=HexColor('#2c3e50'),
leftIndent=20,
spaceAfter=10
)
ai_style = ParagraphStyle(
'AIStyle',
parent=styles['Normal'],
fontSize=11,
textColor=HexColor('#34495e'),
leftIndent=20,
spaceAfter=10
)
meta_style = ParagraphStyle(
'MetaStyle',
parent=styles['Normal'],
fontSize=9,
textColor=HexColor('#7f8c8d'),
spaceAfter=6
)
story.append(Paragraph("AI Reasoning Chat History", title_style))
story.append(Paragraph(
f"Exported on {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}",
meta_style
))
story.append(Spacer(1, 0.3*inch))
for i, entry in enumerate(entries, 1):
story.append(Paragraph(f"Conversation {i}", heading_style))
meta_text = f"<b>Time:</b> {entry.timestamp} | <b>Model:</b> {entry.model} | <b>Mode:</b> {entry.reasoning_mode}"
story.append(Paragraph(meta_text, meta_style))
perf_text = f"<b>Performance:</b> {entry.inference_time:.2f}s | {entry.tokens} tokens | {entry.tokens_per_second:.1f} tok/s"
story.append(Paragraph(perf_text, meta_style))
story.append(Spacer(1, 0.1*inch))
story.append(Paragraph("<b>User:</b>", user_style))
# Escape and truncate for memory efficiency
user_msg = entry.user_message.replace('<', '<').replace('>', '>').replace('\n', '<br/>')[:3000]
if len(entry.user_message) > 3000:
user_msg += "... (truncated)"
story.append(Paragraph(user_msg, user_style))
story.append(Spacer(1, 0.15*inch))
story.append(Paragraph("<b>Assistant:</b>", ai_style))
# Escape and truncate for memory efficiency
ai_resp = entry.ai_response.replace('<', '<').replace('>', '>').replace('\n', '<br/>')[:5000]
if len(entry.ai_response) > 5000:
ai_resp += "... (truncated)"
story.append(Paragraph(ai_resp, ai_style))
if i < len(entries):
story.append(PageBreak())
doc.build(story)
logger.info(f"PDF exported successfully to {filename}")
return filename
except ImportError:
error_msg = "reportlab library not installed. Run: pip install reportlab"
logger.error(error_msg)
return ""
except Exception as e:
logger.error(f"PDF export failed: {e}", exc_info=True)
return ""
@classmethod
def export(cls, entries: List[ConversationEntry], format_type: str,
include_metadata: bool = True) -> Tuple[str, str]:
"""Export conversation and return content and filename"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
if format_type == "pdf":
ext = "pdf"
filename = AppConfig.EXPORT_DIR / f"conversation_{timestamp}.{ext}"
result = cls.to_pdf(entries, str(filename))
if result:
return f"✅ PDF exported successfully! File: conversation_{timestamp}.pdf", str(filename)
else:
return "❌ PDF export failed. Install reportlab: pip install reportlab", ""
exporters = {
"json": lambda: cls.to_json(entries),
"markdown": lambda: cls.to_markdown(entries, include_metadata),
"txt": lambda: cls.to_text(entries)
}
if format_type not in exporters:
format_type = "markdown"
content = exporters[format_type]()
ext = "md" if format_type == "markdown" else format_type
filename = AppConfig.EXPORT_DIR / f"conversation_{timestamp}.{ext}"
try:
with open(filename, 'w', encoding='utf-8') as f:
f.write(content)
logger.info(f"Conversation exported to {filename}")
return content, str(filename)
except Exception as e:
logger.error(f"Failed to export conversation: {e}")
return f"Error: {str(e)}", ""
@staticmethod
def create_backup(entries: List[ConversationEntry]) -> str:
"""Create automatic backup"""
if not entries:
return ""
try:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = AppConfig.BACKUP_DIR / f"backup_{timestamp}.json"
data = [entry.to_dict() for entry in entries]
with open(filename, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
logger.info(f"Backup created: {filename}")
return str(filename)
except Exception as e:
logger.error(f"Backup failed: {e}")
return ""
class AdvancedReasoner:
"""Enhanced reasoning engine with caching, rate limiting, and advanced features"""
def __init__(self):
self.client = GroqClientManager.get_client()
self.metrics = ConversationMetrics()
self.conversation_history: List[ConversationEntry] = []
self.response_times: List[float] = []
self.prompt_engine = PromptEngine()
self.exporter = ConversationExporter()
self.cache = ResponseCache(maxsize=AppConfig.CACHE_SIZE, ttl=AppConfig.CACHE_TTL)
self.rate_limiter = RateLimiter(
max_requests=AppConfig.RATE_LIMIT_REQUESTS,
window=AppConfig.RATE_LIMIT_WINDOW
)
self.session_id = hashlib.md5(str(time.time()).encode()).hexdigest()[:12]
self.executor = ThreadPoolExecutor(max_workers=3)
self.model_usage: Dict[str, int] = defaultdict(int)
self.mode_usage: Dict[str, int] = defaultdict(int)
self.error_log: List[Dict[str, Any]] = []
logger.info(f"AdvancedReasoner initialized with session ID: {self.session_id}")
def _generate_cache_key(self, query: str, model: str, mode: str,
temp: float, template: str) -> str:
"""Generate stable cache key for request"""
# Normalize inputs for consistent key generation
normalized_query = query.strip().lower()[:500] # Limit length
content = f"{normalized_query}|{model}|{mode}|{temp:.2f}|{template}"
return hashlib.sha256(content.encode('utf-8')).hexdigest()
def _calculate_reasoning_depth(self, response: str) -> int:
"""Calculate reasoning depth from response"""
indicators = {
"Step": 3, "PATH": 4, "Attempt": 3, "Phase": 3,
"Analysis": 2, "Consider": 1, "Therefore": 2,
"Conclusion": 2, "Evidence": 2, "Reasoning": 1
}
depth = 0
for indicator, weight in indicators.items():
depth += response.count(indicator) * weight
return min(depth, 100)
def _build_messages(
self,
query: str,
history: List[Dict],
mode: ReasoningMode,
template: str
) -> List[Dict[str, str]]:
"""Build message list for API call with validation"""
messages = [
{"role": "system", "content": self.prompt_engine.SYSTEM_PROMPTS[mode]}
]
recent_history = history[-AppConfig.MAX_HISTORY_LENGTH:] if history else []
for msg in recent_history:
# Validate message structure
if isinstance(msg, dict) and "role" in msg and "content" in msg:
role = msg.get("role")
content = msg.get("content", "")
# Only add valid user/assistant messages
if role in ["user", "assistant"] and content:
messages.append({"role": role, "content": str(content)})
enhanced_query = self.prompt_engine.build_prompt(query, mode, template)
messages.append({"role": "user", "content": enhanced_query})
return messages
def _log_error(self, error: Exception, context: Dict[str, Any]) -> None:
"""Log error with context"""
error_entry = {
"timestamp": datetime.now().isoformat(),
"error": str(error),
"type": type(error).__name__,
"context": context
}
self.error_log.append(error_entry)
self.metrics.increment_field("error_count")
logger.error(f"Error logged: {error_entry}")
@error_handler
def generate_response(
self,
query: str,
history: List[Dict],
model: str,
reasoning_mode: ReasoningMode,
enable_critique: bool,
temperature: float,
max_tokens: int,
prompt_template: str = "Custom",
use_cache: bool = True
) -> Generator[str, None, None]:
"""Generate response with advanced features - FIXED for streaming"""
is_valid, error_msg = validate_input(query)
if not is_valid:
yield f"⚠️ Validation Error: {error_msg}"
return
allowed, wait_time = self.rate_limiter.is_allowed()
if not allowed:
yield f"⏱️ Rate Limit: Please wait {wait_time:.1f} seconds."
return
cache_key = self._generate_cache_key(query, model, reasoning_mode.value, temperature, prompt_template)
if use_cache:
cached_response = self.cache.get(cache_key)
if cached_response:
self.metrics.increment_field("cache_hits")
logger.info("Returning cached response")
yield cached_response
return
self.metrics.increment_field("cache_misses")
with timer(f"Response generation for {model}"):
start_time = time.time()
messages = self._build_messages(query, history, reasoning_mode, prompt_template)
full_response = ""
token_count = 0
try:
stream = self.client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature,
max_tokens=max_tokens,
stream=True,
)
# FIXED: Only yield new content, not full_response repeatedly
for chunk in stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
full_response += content
token_count += 1
self.metrics.increment_field("tokens_used")
# Yield only the accumulated response so far
yield full_response
except Exception as e:
self._log_error(e, {
"query": query[:100],
"model": model,
"mode": reasoning_mode.value
})
raise
inference_time = time.time() - start_time
self.metrics.set_field("reasoning_depth", self._calculate_reasoning_depth(full_response))
self.metrics.update_tokens_per_second(token_count, inference_time)
self.metrics.set_field("peak_tokens", max(self.metrics.peak_tokens, token_count))
if enable_critique and len(full_response) > 150:
messages.append({"role": "assistant", "content": full_response})
messages.append({
"role": "user",
"content": self.prompt_engine.build_critique_prompt()
})
full_response += "\n\n---\n### Validation & Self-Critique\n"
yield full_response
try:
critique_stream = self.client.chat.completions.create(
messages=messages,
model=model,
temperature=temperature * 0.7,
max_tokens=max_tokens // 3,
stream=True,
)
for chunk in critique_stream:
if chunk.choices[0].delta.content:
content = chunk.choices[0].delta.content
full_response += content
token_count += 1
yield full_response
self.metrics.increment_field("self_corrections")
except Exception as e:
logger.warning(f"Critique phase failed: {e}")
final_inference_time = time.time() - start_time
self.metrics.set_field("inference_time", final_inference_time)
self.metrics.increment_field("total_latency", final_inference_time)
self.response_times.append(final_inference_time)
self.metrics.set_field("avg_response_time", sum(self.response_times) / len(self.response_times))
self.metrics.set_field("last_updated", datetime.now().strftime("%H:%M:%S"))
self.metrics.update_confidence()
self.metrics.increment_field("total_conversations")
self.model_usage[model] += 1
self.mode_usage[reasoning_mode.value] += 1
tokens_per_sec = token_count / final_inference_time if final_inference_time > 0 else 0
entry = ConversationEntry(
timestamp=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
user_message=query,
ai_response=full_response,
model=model,
reasoning_mode=reasoning_mode.value,
inference_time=final_inference_time,
tokens=token_count,
session_id=self.session_id,
temperature=temperature,
max_tokens=max_tokens,
cache_hit=False,
tokens_per_second=tokens_per_sec
)
self.conversation_history.append(entry)
if use_cache:
self.cache.set(cache_key, full_response)
if len(self.conversation_history) % 10 == 0:
try:
self.executor.submit(self.exporter.create_backup, self.conversation_history.copy())
except Exception as e:
logger.warning(f"Auto-backup failed: {e}")
if len(self.conversation_history) > AppConfig.MAX_CONVERSATION_STORAGE:
self.conversation_history = self.conversation_history[-AppConfig.MAX_CONVERSATION_STORAGE:]
logger.info(f"Trimmed history to {AppConfig.MAX_CONVERSATION_STORAGE} entries")
def export_conversation(self, format_type: str, include_metadata: bool = True) -> Tuple[str, str]:
"""Export conversation history"""
if not self.conversation_history:
return "No conversations to export.", ""
try:
return self.exporter.export(self.conversation_history, format_type, include_metadata)
except Exception as e:
logger.error(f"Export failed: {e}")
return f"Export failed: {str(e)}", ""
def export_current_chat_pdf(self) -> Optional[str]:
"""Export current chat as PDF - for quick download button"""
if not self.conversation_history:
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = AppConfig.EXPORT_DIR / f"chat_{timestamp}.pdf"
result = self.exporter.to_pdf(self.conversation_history, str(filename))
return result if result else None
def search_conversations(self, keyword: str) -> List[Tuple[int, ConversationEntry]]:
"""Search through conversation history"""
keyword_lower = keyword.lower()
return [
(i, entry) for i, entry in enumerate(self.conversation_history)
if keyword_lower in entry.user_message.lower()
or keyword_lower in entry.ai_response.lower()
]
def get_analytics(self) -> Optional[Dict[str, Any]]:
"""Generate analytics data"""
if not self.conversation_history:
return None
models = [e.model for e in self.conversation_history]
modes = [e.reasoning_mode for e in self.conversation_history]
total_time = sum(e.inference_time for e in self.conversation_history)
total_tokens = sum(e.tokens for e in self.conversation_history)
return {
"session_id": self.session_id,
"total_conversations": len(self.conversation_history),
"total_tokens": total_tokens,
"total_time": total_time,
"avg_inference_time": self.metrics.avg_response_time,
"peak_tokens": self.metrics.peak_tokens,
"most_used_model": max(set(models), key=models.count) if models else "N/A",
"most_used_mode": max(set(modes), key=modes.count) if modes else "N/A",
"cache_hits": self.metrics.cache_hits,
"cache_misses": self.metrics.cache_misses,
"error_count": self.metrics.error_count
}
def clear_history(self) -> None:
"""Clear conversation history and reset metrics"""
if self.conversation_history:
try:
self.executor.submit(self.exporter.create_backup, self.conversation_history.copy())
except Exception as e:
logger.warning(f"Failed to backup before clearing: {e}")
self.conversation_history.clear()
self.response_times.clear()
self.metrics.reset()
self.cache.clear()
self.rate_limiter.reset()
self.model_usage.clear()
self.mode_usage.clear()
logger.info("History cleared and metrics reset")
def __del__(self):
"""Cleanup on deletion"""
try:
self.executor.shutdown(wait=False)
logger.info("AdvancedReasoner cleanup completed")
except:
pass
|