Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| # Load the models using pipeline | |
| audio_model = pipeline("audio-classification", model="MelodyMachine/Deepfake-audio-detection-V2") | |
| image_model = pipeline("image-classification", model="dima806/deepfake_vs_real_image_detection") | |
| # Define the prediction function | |
| def predict(audio, image, model_choice): | |
| print("Data received:", audio if model_choice == "Audio Deepfake Detection" else image) # Debugging statement | |
| try: | |
| if model_choice == "Audio Deepfake Detection": | |
| result = audio_model(audio) | |
| elif model_choice == "Image Deepfake Detection": | |
| result = image_model(image) | |
| else: | |
| return {"error": "Invalid model choice"} | |
| print("Raw prediction result:", result) # Debugging statement | |
| # Convert the result to the expected format | |
| output = {item['label']: item['score'] for item in result} | |
| print("Formatted prediction result:", output) # Debugging statement | |
| return output | |
| except Exception as e: | |
| print("Error during prediction:", e) # Debugging statement | |
| return {"error": str(e)} | |
| # Update interface based on the selected model | |
| def update_interface(model_choice): | |
| if model_choice == "Audio Deepfake Detection": | |
| return gr.update(visible=True), gr.update(visible=False) | |
| elif model_choice == "Image Deepfake Detection": | |
| return gr.update(visible=False), gr.update(visible=True) | |
| # Create Gradio interface | |
| with gr.Blocks() as iface: | |
| model_choice = gr.Radio(choices=["Audio Deepfake Detection", "Image Deepfake Detection"], label="Select Model", value="Audio Deepfake Detection") | |
| audio_input = gr.Audio(type="filepath", label="Upload Audio File") | |
| image_input = gr.Image(type="filepath", label="Upload Image File", visible=False) | |
| output = gr.Label() | |
| model_choice.change(fn=update_interface, inputs=model_choice, outputs=[audio_input, image_input]) | |
| submit_button = gr.Button("Submit") | |
| submit_button.click(fn=predict, inputs=[audio_input, image_input, model_choice], outputs=output) | |
| iface.launch() | |