Update app.py
Browse files
app.py
CHANGED
|
@@ -42,7 +42,27 @@ WRITING_STYLE_COLS = ['#P', 'Model', 'Reg+MyScore π', 'Reg+Int π', 'MyScor
|
|
| 42 |
ANIME_RATING_COLS = ['#P', 'Model', 'Score π', 'Dif', 'Cor', 'Std']
|
| 43 |
|
| 44 |
# Load the leaderboard data from a CSV file
|
| 45 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
filtered_df = df.copy()
|
| 47 |
if param_ranges:
|
| 48 |
param_mask = pd.Series(False, index=filtered_df.index)
|
|
@@ -65,9 +85,6 @@ def update_table(df: pd.DataFrame, query: str, param_ranges: list, w10_range: li
|
|
| 65 |
param_mask |= (filtered_df['Params'] >= 65)
|
| 66 |
filtered_df = filtered_df[param_mask]
|
| 67 |
|
| 68 |
-
# Apply W/10 filter
|
| 69 |
-
filtered_df = filtered_df[(filtered_df['W/10 π'] >= w10_range[0]) & (filtered_df['W/10 π'] <= w10_range[1])]
|
| 70 |
-
|
| 71 |
if query:
|
| 72 |
filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
|
| 73 |
|
|
@@ -103,15 +120,6 @@ with GraInter:
|
|
| 103 |
interactive=True,
|
| 104 |
elem_id="filter-columns-size",
|
| 105 |
)
|
| 106 |
-
with gr.Row():
|
| 107 |
-
w10_slider = gr.Slider(
|
| 108 |
-
minimum=0,
|
| 109 |
-
maximum=10,
|
| 110 |
-
value=[0, 10],
|
| 111 |
-
step=0.1,
|
| 112 |
-
label="W/10 Range",
|
| 113 |
-
elem_id="w10-slider"
|
| 114 |
-
)
|
| 115 |
|
| 116 |
# Load the initial leaderboard data
|
| 117 |
leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
|
|
@@ -231,36 +239,30 @@ with GraInter:
|
|
| 231 |
**NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
|
| 232 |
""")
|
| 233 |
|
| 234 |
-
def update_all_tables(query, param_ranges
|
| 235 |
-
ugi_table = update_table(leaderboard_df, query, param_ranges,
|
| 236 |
|
| 237 |
ws_df = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
| 238 |
-
ws_table = update_table(ws_df, query, param_ranges,
|
| 239 |
|
| 240 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|
| 241 |
arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
| 242 |
arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
| 243 |
|
| 244 |
-
arp_table = update_table(arp_df, query, param_ranges,
|
| 245 |
-
arp_na_table = update_table(arp_df_na, query, param_ranges,
|
| 246 |
|
| 247 |
return ugi_table, ws_table, arp_table, arp_na_table
|
| 248 |
|
| 249 |
search_bar.change(
|
| 250 |
fn=update_all_tables,
|
| 251 |
-
inputs=[search_bar, filter_columns_size
|
| 252 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
| 253 |
)
|
| 254 |
|
| 255 |
filter_columns_size.change(
|
| 256 |
fn=update_all_tables,
|
| 257 |
-
inputs=[search_bar, filter_columns_size
|
| 258 |
-
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
w10_slider.change(
|
| 262 |
-
fn=update_all_tables,
|
| 263 |
-
inputs=[search_bar, filter_columns_size, w10_slider],
|
| 264 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
| 265 |
)
|
| 266 |
|
|
|
|
| 42 |
ANIME_RATING_COLS = ['#P', 'Model', 'Score π', 'Dif', 'Cor', 'Std']
|
| 43 |
|
| 44 |
# Load the leaderboard data from a CSV file
|
| 45 |
+
def load_leaderboard_data(csv_file_path):
|
| 46 |
+
try:
|
| 47 |
+
df = pd.read_csv(csv_file_path)
|
| 48 |
+
df['Model'] = df.apply(lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"], axis=1)
|
| 49 |
+
df.drop(columns=['Link'], inplace=True)
|
| 50 |
+
|
| 51 |
+
# Round numeric columns to 3 decimal places
|
| 52 |
+
numeric_columns = df.select_dtypes(include=[np.number]).columns
|
| 53 |
+
df[numeric_columns] = df[numeric_columns].round(3)
|
| 54 |
+
|
| 55 |
+
# Round the W/10 column to 1 decimal place
|
| 56 |
+
if 'W/10 π' in df.columns:
|
| 57 |
+
df['W/10 π'] = df['W/10 π'].round(1)
|
| 58 |
+
|
| 59 |
+
return df
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error loading CSV file: {e}")
|
| 62 |
+
return pd.DataFrame(columns=UGI_COLS + WRITING_STYLE_COLS + ANIME_RATING_COLS)
|
| 63 |
+
|
| 64 |
+
# Update the leaderboard table based on the search query and parameter range filters
|
| 65 |
+
def update_table(df: pd.DataFrame, query: str, param_ranges: list, columns: list) -> pd.DataFrame:
|
| 66 |
filtered_df = df.copy()
|
| 67 |
if param_ranges:
|
| 68 |
param_mask = pd.Series(False, index=filtered_df.index)
|
|
|
|
| 85 |
param_mask |= (filtered_df['Params'] >= 65)
|
| 86 |
filtered_df = filtered_df[param_mask]
|
| 87 |
|
|
|
|
|
|
|
|
|
|
| 88 |
if query:
|
| 89 |
filtered_df = filtered_df[filtered_df['Model'].str.contains(query, case=False, na=False)]
|
| 90 |
|
|
|
|
| 120 |
interactive=True,
|
| 121 |
elem_id="filter-columns-size",
|
| 122 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
|
| 124 |
# Load the initial leaderboard data
|
| 125 |
leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
|
|
|
|
| 239 |
**NA:** When models either reply with one number for every anime, give ratings not between 1 and 10, or don't give every anime in the list a rating.
|
| 240 |
""")
|
| 241 |
|
| 242 |
+
def update_all_tables(query, param_ranges):
|
| 243 |
+
ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS)
|
| 244 |
|
| 245 |
ws_df = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
| 246 |
+
ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS)
|
| 247 |
|
| 248 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|
| 249 |
arp_df_na = arp_df[arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
| 250 |
arp_df = arp_df[~arp_df[['Dif', 'Cor']].isna().any(axis=1)]
|
| 251 |
|
| 252 |
+
arp_table = update_table(arp_df, query, param_ranges, ANIME_RATING_COLS)
|
| 253 |
+
arp_na_table = update_table(arp_df_na, query, param_ranges, ANIME_RATING_COLS).fillna('NA')
|
| 254 |
|
| 255 |
return ugi_table, ws_table, arp_table, arp_na_table
|
| 256 |
|
| 257 |
search_bar.change(
|
| 258 |
fn=update_all_tables,
|
| 259 |
+
inputs=[search_bar, filter_columns_size],
|
| 260 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
| 261 |
)
|
| 262 |
|
| 263 |
filter_columns_size.change(
|
| 264 |
fn=update_all_tables,
|
| 265 |
+
inputs=[search_bar, filter_columns_size],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
outputs=[leaderboard_table_ugi, leaderboard_table_ws, leaderboard_table_arp, leaderboard_table_arp_na]
|
| 267 |
)
|
| 268 |
|