Spaces:
Sleeping
Sleeping
Commit
·
2f79958
1
Parent(s):
e1c09f7
updated model
Browse files- fineTuning.py +2 -167
fineTuning.py
CHANGED
|
@@ -1,10 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
-
|
| 4 |
-
from torch.amp import GradScaler, autocast
|
| 5 |
-
from torch.utils.tensorboard import SummaryWriter
|
| 6 |
-
from tqdm import tqdm
|
| 7 |
-
from transformers import RobertaTokenizerFast, get_linear_schedule_with_warmup
|
| 8 |
|
| 9 |
from modelFineTuning import RoBERTa
|
| 10 |
|
|
@@ -17,161 +13,11 @@ class RoBERTaModule(nn.Module):
|
|
| 17 |
vocab_size=self.tokenizer.vocab_size,
|
| 18 |
padding_idx=self.tokenizer.pad_token_id,
|
| 19 |
num_labels=2,
|
| 20 |
-
)
|
| 21 |
|
| 22 |
def forward(self, x, attn_mask):
|
| 23 |
return self.model(x, attn_mask)
|
| 24 |
|
| 25 |
-
def train_model(
|
| 26 |
-
self,
|
| 27 |
-
train_loader,
|
| 28 |
-
validation_loader,
|
| 29 |
-
num_epochs,
|
| 30 |
-
lr=2e-5,
|
| 31 |
-
optimizer=None,
|
| 32 |
-
scheduler=None,
|
| 33 |
-
scaler=None,
|
| 34 |
-
device="cuda",
|
| 35 |
-
):
|
| 36 |
-
# device = torch.device("cuda")
|
| 37 |
-
self.model.to(device)
|
| 38 |
-
|
| 39 |
-
total_steps = len(train_loader) * num_epochs
|
| 40 |
-
# 6% of the total number of steps are warmups steps as in paper
|
| 41 |
-
warmup_steps = int(0.06 * total_steps)
|
| 42 |
-
|
| 43 |
-
if optimizer is None:
|
| 44 |
-
optimizer = torch.optim.AdamW(
|
| 45 |
-
self.model.parameters(),
|
| 46 |
-
lr=lr,
|
| 47 |
-
betas=(0.99, 0.999),
|
| 48 |
-
eps=1e-6,
|
| 49 |
-
weight_decay=0.01,
|
| 50 |
-
)
|
| 51 |
-
|
| 52 |
-
if scheduler is None:
|
| 53 |
-
scheduler = get_linear_schedule_with_warmup(
|
| 54 |
-
# linear insted of cosine as in paper
|
| 55 |
-
optimizer,
|
| 56 |
-
num_warmup_steps=warmup_steps,
|
| 57 |
-
num_training_steps=total_steps,
|
| 58 |
-
)
|
| 59 |
-
|
| 60 |
-
if scaler is None:
|
| 61 |
-
scaler = GradScaler()
|
| 62 |
-
|
| 63 |
-
writer = SummaryWriter()
|
| 64 |
-
|
| 65 |
-
# early stopping
|
| 66 |
-
patience_counter = 0
|
| 67 |
-
patience_limit = 5
|
| 68 |
-
epsilon = 1e-3
|
| 69 |
-
best_valid_loss = float("inf")
|
| 70 |
-
best_model_state = None
|
| 71 |
-
|
| 72 |
-
for epoch in range(num_epochs):
|
| 73 |
-
# train part
|
| 74 |
-
self.model.train()
|
| 75 |
-
total_loss_train = 0
|
| 76 |
-
|
| 77 |
-
for batch_idx, batch in enumerate(
|
| 78 |
-
tqdm(train_loader, desc=f"Training Epoch {epoch + 1}")
|
| 79 |
-
):
|
| 80 |
-
input_ids, attention_mask, labels = (
|
| 81 |
-
batch["input_ids"].to(device),
|
| 82 |
-
batch["attention_mask"].to(device),
|
| 83 |
-
batch["labels"].to(device),
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
with autocast(device_type="cuda", dtype=torch.float16, enabled=True):
|
| 87 |
-
output = self.model(input_ids, attention_mask)
|
| 88 |
-
loss = F.cross_entropy(
|
| 89 |
-
output.view(-1, output.shape[-1]),
|
| 90 |
-
labels.view(-1),
|
| 91 |
-
ignore_index=-100,
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
scaler.scale(loss).backward()
|
| 95 |
-
scaler.unscale_(optimizer) # unscale before clipping
|
| 96 |
-
torch.nn.utils.clip_grad_norm_(
|
| 97 |
-
self.model.parameters(), max_norm=1.0
|
| 98 |
-
) # gradient clipping
|
| 99 |
-
scaler.step(optimizer)
|
| 100 |
-
scheduler.step()
|
| 101 |
-
scaler.update()
|
| 102 |
-
optimizer.zero_grad()
|
| 103 |
-
|
| 104 |
-
total_loss_train += loss.item()
|
| 105 |
-
|
| 106 |
-
train_loss = total_loss_train / len(train_loader)
|
| 107 |
-
|
| 108 |
-
# validation part
|
| 109 |
-
|
| 110 |
-
self.model.eval()
|
| 111 |
-
|
| 112 |
-
total_loss_valid = 0
|
| 113 |
-
total_correct = 0
|
| 114 |
-
total_tokens = 0
|
| 115 |
-
|
| 116 |
-
with torch.no_grad():
|
| 117 |
-
for batch_idx, batch in enumerate(validation_loader):
|
| 118 |
-
input_ids, attention_mask, labels = (
|
| 119 |
-
batch["input_ids"].to(device),
|
| 120 |
-
batch["attention_mask"].to(device),
|
| 121 |
-
batch["labels"].to(device),
|
| 122 |
-
)
|
| 123 |
-
|
| 124 |
-
with autocast(
|
| 125 |
-
device_type="cuda", dtype=torch.float16, enabled=True
|
| 126 |
-
):
|
| 127 |
-
output = self.model(input_ids, attention_mask)
|
| 128 |
-
loss = F.cross_entropy(
|
| 129 |
-
output.view(-1, output.shape[-1]),
|
| 130 |
-
labels.view(-1),
|
| 131 |
-
ignore_index=-100,
|
| 132 |
-
label_smoothing=0.05,
|
| 133 |
-
)
|
| 134 |
-
|
| 135 |
-
preds = torch.argmax(output, dim=-1)
|
| 136 |
-
correct = (preds == labels).float().sum()
|
| 137 |
-
|
| 138 |
-
total_loss_valid += loss.item()
|
| 139 |
-
total_correct += correct
|
| 140 |
-
total_tokens += labels.size(0)
|
| 141 |
-
|
| 142 |
-
validation_loss = total_loss_valid / len(validation_loader)
|
| 143 |
-
validation_accuracy = total_correct / total_tokens
|
| 144 |
-
|
| 145 |
-
if validation_loss < best_valid_loss - epsilon:
|
| 146 |
-
best_valid_loss = validation_loss
|
| 147 |
-
patience_counter = 0
|
| 148 |
-
best_model_state = self.model.state_dict().copy()
|
| 149 |
-
else:
|
| 150 |
-
patience_counter += 1
|
| 151 |
-
if patience_counter >= patience_limit:
|
| 152 |
-
self.model.load_state_dict(best_model_state)
|
| 153 |
-
self.save_checkpoint(
|
| 154 |
-
best_model_state,
|
| 155 |
-
optimizer,
|
| 156 |
-
scheduler,
|
| 157 |
-
scaler,
|
| 158 |
-
path="cpEarly.pt",
|
| 159 |
-
)
|
| 160 |
-
break
|
| 161 |
-
|
| 162 |
-
print(
|
| 163 |
-
f"Epoch {epoch + 1}, train loss: {train_loss:.4f}, "
|
| 164 |
-
f"Valid loss: {validation_loss:.4f}, "
|
| 165 |
-
f"Validation accuracy: {validation_accuracy:.4f}"
|
| 166 |
-
)
|
| 167 |
-
|
| 168 |
-
writer.close()
|
| 169 |
-
|
| 170 |
-
self.model.load_state_dict(best_model_state)
|
| 171 |
-
self.save_checkpoint(
|
| 172 |
-
self.model.state_dict(), optimizer, scheduler, path="finishedBest.pt"
|
| 173 |
-
)
|
| 174 |
-
|
| 175 |
def inference(self, sentece):
|
| 176 |
self.model.eval()
|
| 177 |
sentece_tokenized = self.tokenizer(
|
|
@@ -185,17 +31,6 @@ class RoBERTaModule(nn.Module):
|
|
| 185 |
preds = torch.argmax(outputs, dim=-1).item()
|
| 186 |
return preds
|
| 187 |
|
| 188 |
-
def save_checkpoint(self, model, optimizer, scheduler, path="checkpoint.pt"):
|
| 189 |
-
torch.save(
|
| 190 |
-
{
|
| 191 |
-
"model_state_dict": model,
|
| 192 |
-
"optimizer_state_dict": optimizer.state_dict(),
|
| 193 |
-
"scheduler_state_dict": scheduler.state_dict(),
|
| 194 |
-
},
|
| 195 |
-
path,
|
| 196 |
-
)
|
| 197 |
-
print(f"Checkpoint saved to {path}")
|
| 198 |
-
|
| 199 |
def load_checkpoint(self, model=None, path="finished.pt", location="cuda"):
|
| 200 |
checkpoint = torch.load(path, map_location=location, weights_only=True)
|
| 201 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
+
from transformers import RobertaTokenizerFast
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from modelFineTuning import RoBERTa
|
| 6 |
|
|
|
|
| 13 |
vocab_size=self.tokenizer.vocab_size,
|
| 14 |
padding_idx=self.tokenizer.pad_token_id,
|
| 15 |
num_labels=2,
|
| 16 |
+
)
|
| 17 |
|
| 18 |
def forward(self, x, attn_mask):
|
| 19 |
return self.model(x, attn_mask)
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def inference(self, sentece):
|
| 22 |
self.model.eval()
|
| 23 |
sentece_tokenized = self.tokenizer(
|
|
|
|
| 31 |
preds = torch.argmax(outputs, dim=-1).item()
|
| 32 |
return preds
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
def load_checkpoint(self, model=None, path="finished.pt", location="cuda"):
|
| 35 |
checkpoint = torch.load(path, map_location=location, weights_only=True)
|
| 36 |
|