Spaces:
				
			
			
	
			
			
		Running
		
			on 
			
			Zero
	
	
	
			
			
	
	
	
	
		
		
		Running
		
			on 
			
			Zero
	init
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- LICENSE +470 -0
 - app.py +154 -0
 - configs/inference_256_v1.0.yaml +98 -0
 - lvdm/__pycache__/basics.cpython-39.pyc +0 -0
 - lvdm/__pycache__/common.cpython-39.pyc +0 -0
 - lvdm/__pycache__/distributions.cpython-39.pyc +0 -0
 - lvdm/__pycache__/ema.cpython-39.pyc +0 -0
 - lvdm/basics.py +100 -0
 - lvdm/common.py +94 -0
 - lvdm/distributions.py +95 -0
 - lvdm/ema.py +76 -0
 - lvdm/models/__pycache__/autoencoder.cpython-39.pyc +0 -0
 - lvdm/models/__pycache__/ddpm3d.cpython-39.pyc +0 -0
 - lvdm/models/__pycache__/utils_diffusion.cpython-39.pyc +0 -0
 - lvdm/models/autoencoder.py +219 -0
 - lvdm/models/ddpm3d.py +732 -0
 - lvdm/models/samplers/__pycache__/ddim.cpython-39.pyc +0 -0
 - lvdm/models/samplers/__pycache__/ddim_multiplecond.cpython-39.pyc +0 -0
 - lvdm/models/samplers/ddim.py +306 -0
 - lvdm/models/samplers/ddim_multiplecond.py +297 -0
 - lvdm/models/utils_diffusion.py +104 -0
 - lvdm/modules/__pycache__/attention.cpython-39.pyc +0 -0
 - lvdm/modules/attention.py +514 -0
 - lvdm/modules/encoders/__pycache__/condition.cpython-39.pyc +0 -0
 - lvdm/modules/encoders/__pycache__/resampler.cpython-39.pyc +0 -0
 - lvdm/modules/encoders/condition.py +389 -0
 - lvdm/modules/encoders/resampler.py +145 -0
 - lvdm/modules/networks/__pycache__/ae_modules.cpython-39.pyc +0 -0
 - lvdm/modules/networks/__pycache__/openaimodel3d.cpython-39.pyc +0 -0
 - lvdm/modules/networks/ae_modules.py +844 -0
 - lvdm/modules/networks/openaimodel3d.py +603 -0
 - lvdm/modules/x_transformer.py +639 -0
 - prompts/art.png +0 -0
 - prompts/bear.png +0 -0
 - prompts/boy.png +0 -0
 - prompts/dance1.jpeg +0 -0
 - prompts/fire_and_beach.jpg +0 -0
 - prompts/girl2.jpeg +0 -0
 - prompts/girl3.jpeg +0 -0
 - prompts/guitar0.jpeg +0 -0
 - prompts/test_prompts.txt +8 -0
 - requirements.txt +23 -0
 - scripts/evaluation/__pycache__/funcs.cpython-39.pyc +0 -0
 - scripts/evaluation/ddp_wrapper.py +47 -0
 - scripts/evaluation/funcs.py +205 -0
 - scripts/evaluation/inference.py +329 -0
 - scripts/gradio/__pycache__/i2v_test.cpython-39.pyc +0 -0
 - scripts/gradio/i2v_test.py +102 -0
 - scripts/run.sh +25 -0
 - utils/__pycache__/utils.cpython-39.pyc +0 -0
 
    	
        LICENSE
    ADDED
    
    | 
         @@ -0,0 +1,470 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            This license applies to the source codes that are open sourced in connection with the DynamiCrafter.
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            Copyright (C) 2023 THL A29 Limited, a Tencent company.  
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            Apache License
         
     | 
| 6 | 
         
            +
            Version 2.0, January 2004
         
     | 
| 7 | 
         
            +
            http://www.apache.org/licenses/
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            1. Definitions.
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            "License" shall mean the terms and conditions for use, reproduction,
         
     | 
| 14 | 
         
            +
            and distribution as defined by Sections 1 through 9 of this document.
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            "Licensor" shall mean the copyright owner or entity authorized by
         
     | 
| 17 | 
         
            +
            the copyright owner that is granting the License.
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            "Legal Entity" shall mean the union of the acting entity and all
         
     | 
| 20 | 
         
            +
            other entities that control, are controlled by, or are under common
         
     | 
| 21 | 
         
            +
            control with that entity. For the purposes of this definition,
         
     | 
| 22 | 
         
            +
            "control" means (i) the power, direct or indirect, to cause the
         
     | 
| 23 | 
         
            +
            direction or management of such entity, whether by contract or
         
     | 
| 24 | 
         
            +
            otherwise, or (ii) ownership of fifty percent (50%) or more of the
         
     | 
| 25 | 
         
            +
            outstanding shares, or (iii) beneficial ownership of such entity.
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            "You" (or "Your") shall mean an individual or Legal Entity
         
     | 
| 28 | 
         
            +
            exercising permissions granted by this License.
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            "Source" form shall mean the preferred form for making modifications,
         
     | 
| 31 | 
         
            +
            including but not limited to software source code, documentation
         
     | 
| 32 | 
         
            +
            source, and configuration files.
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            "Object" form shall mean any form resulting from mechanical
         
     | 
| 35 | 
         
            +
            transformation or translation of a Source form, including but
         
     | 
| 36 | 
         
            +
            not limited to compiled object code, generated documentation,
         
     | 
| 37 | 
         
            +
            and conversions to other media types.
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
            "Work" shall mean the work of authorship, whether in Source or
         
     | 
| 40 | 
         
            +
            Object form, made available under the License, as indicated by a
         
     | 
| 41 | 
         
            +
            copyright notice that is included in or attached to the work
         
     | 
| 42 | 
         
            +
            (an example is provided in the Appendix below).
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            "Derivative Works" shall mean any work, whether in Source or Object
         
     | 
| 45 | 
         
            +
            form, that is based on (or derived from) the Work and for which the
         
     | 
| 46 | 
         
            +
            editorial revisions, annotations, elaborations, or other modifications
         
     | 
| 47 | 
         
            +
            represent, as a whole, an original work of authorship. For the purposes
         
     | 
| 48 | 
         
            +
            of this License, Derivative Works shall not include works that remain
         
     | 
| 49 | 
         
            +
            separable from, or merely link (or bind by name) to the interfaces of,
         
     | 
| 50 | 
         
            +
            the Work and Derivative Works thereof.
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            "Contribution" shall mean any work of authorship, including
         
     | 
| 53 | 
         
            +
            the original version of the Work and any modifications or additions
         
     | 
| 54 | 
         
            +
            to that Work or Derivative Works thereof, that is intentionally
         
     | 
| 55 | 
         
            +
            submitted to Licensor for inclusion in the Work by the copyright owner
         
     | 
| 56 | 
         
            +
            or by an individual or Legal Entity authorized to submit on behalf of
         
     | 
| 57 | 
         
            +
            the copyright owner. For the purposes of this definition, "submitted"
         
     | 
| 58 | 
         
            +
            means any form of electronic, verbal, or written communication sent
         
     | 
| 59 | 
         
            +
            to the Licensor or its representatives, including but not limited to
         
     | 
| 60 | 
         
            +
            communication on electronic mailing lists, source code control systems,
         
     | 
| 61 | 
         
            +
            and issue tracking systems that are managed by, or on behalf of, the
         
     | 
| 62 | 
         
            +
            Licensor for the purpose of discussing and improving the Work, but
         
     | 
| 63 | 
         
            +
            excluding communication that is conspicuously marked or otherwise
         
     | 
| 64 | 
         
            +
            designated in writing by the copyright owner as "Not a Contribution."
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            "Contributor" shall mean Licensor and any individual or Legal Entity
         
     | 
| 67 | 
         
            +
            on behalf of whom a Contribution has been received by Licensor and
         
     | 
| 68 | 
         
            +
            subsequently incorporated within the Work.
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            2. Grant of Copyright License. Subject to the terms and conditions of
         
     | 
| 71 | 
         
            +
            this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 72 | 
         
            +
            worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 73 | 
         
            +
            copyright license to reproduce, prepare Derivative Works of,
         
     | 
| 74 | 
         
            +
            publicly display, publicly perform, sublicense, and distribute the
         
     | 
| 75 | 
         
            +
            Work and such Derivative Works in Source or Object form.
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            3. Grant of Patent License. Subject to the terms and conditions of
         
     | 
| 78 | 
         
            +
            this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 79 | 
         
            +
            worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 80 | 
         
            +
            (except as stated in this section) patent license to make, have made,
         
     | 
| 81 | 
         
            +
            use, offer to sell, sell, import, and otherwise transfer the Work,
         
     | 
| 82 | 
         
            +
            where such license applies only to those patent claims licensable
         
     | 
| 83 | 
         
            +
            by such Contributor that are necessarily infringed by their
         
     | 
| 84 | 
         
            +
            Contribution(s) alone or by combination of their Contribution(s)
         
     | 
| 85 | 
         
            +
            with the Work to which such Contribution(s) was submitted. If You
         
     | 
| 86 | 
         
            +
            institute patent litigation against any entity (including a
         
     | 
| 87 | 
         
            +
            cross-claim or counterclaim in a lawsuit) alleging that the Work
         
     | 
| 88 | 
         
            +
            or a Contribution incorporated within the Work constitutes direct
         
     | 
| 89 | 
         
            +
            or contributory patent infringement, then any patent licenses
         
     | 
| 90 | 
         
            +
            granted to You under this License for that Work shall terminate
         
     | 
| 91 | 
         
            +
            as of the date such litigation is filed.
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            4. Redistribution. You may reproduce and distribute copies of the
         
     | 
| 94 | 
         
            +
            Work or Derivative Works thereof in any medium, with or without
         
     | 
| 95 | 
         
            +
            modifications, and in Source or Object form, provided that You
         
     | 
| 96 | 
         
            +
            meet the following conditions:
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            (a) You must give any other recipients of the Work or
         
     | 
| 99 | 
         
            +
            Derivative Works a copy of this License; and
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            (b) You must cause any modified files to carry prominent notices
         
     | 
| 102 | 
         
            +
            stating that You changed the files; and
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
            (c) You must retain, in the Source form of any Derivative Works
         
     | 
| 105 | 
         
            +
            that You distribute, all copyright, patent, trademark, and
         
     | 
| 106 | 
         
            +
            attribution notices from the Source form of the Work,
         
     | 
| 107 | 
         
            +
            excluding those notices that do not pertain to any part of
         
     | 
| 108 | 
         
            +
            the Derivative Works; and
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
            (d) If the Work includes a "NOTICE" text file as part of its
         
     | 
| 111 | 
         
            +
            distribution, then any Derivative Works that You distribute must
         
     | 
| 112 | 
         
            +
            include a readable copy of the attribution notices contained
         
     | 
| 113 | 
         
            +
            within such NOTICE file, excluding those notices that do not
         
     | 
| 114 | 
         
            +
            pertain to any part of the Derivative Works, in at least one
         
     | 
| 115 | 
         
            +
            of the following places: within a NOTICE text file distributed
         
     | 
| 116 | 
         
            +
            as part of the Derivative Works; within the Source form or
         
     | 
| 117 | 
         
            +
            documentation, if provided along with the Derivative Works; or,
         
     | 
| 118 | 
         
            +
            within a display generated by the Derivative Works, if and
         
     | 
| 119 | 
         
            +
            wherever such third-party notices normally appear. The contents
         
     | 
| 120 | 
         
            +
            of the NOTICE file are for informational purposes only and
         
     | 
| 121 | 
         
            +
            do not modify the License. You may add Your own attribution
         
     | 
| 122 | 
         
            +
            notices within Derivative Works that You distribute, alongside
         
     | 
| 123 | 
         
            +
            or as an addendum to the NOTICE text from the Work, provided
         
     | 
| 124 | 
         
            +
            that such additional attribution notices cannot be construed
         
     | 
| 125 | 
         
            +
            as modifying the License.
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
            You may add Your own copyright statement to Your modifications and
         
     | 
| 128 | 
         
            +
            may provide additional or different license terms and conditions
         
     | 
| 129 | 
         
            +
            for use, reproduction, or distribution of Your modifications, or
         
     | 
| 130 | 
         
            +
            for any such Derivative Works as a whole, provided Your use,
         
     | 
| 131 | 
         
            +
            reproduction, and distribution of the Work otherwise complies with
         
     | 
| 132 | 
         
            +
            the conditions stated in this License.
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
            5. Submission of Contributions. Unless You explicitly state otherwise,
         
     | 
| 135 | 
         
            +
            any Contribution intentionally submitted for inclusion in the Work
         
     | 
| 136 | 
         
            +
            by You to the Licensor shall be under the terms and conditions of
         
     | 
| 137 | 
         
            +
            this License, without any additional terms or conditions.
         
     | 
| 138 | 
         
            +
            Notwithstanding the above, nothing herein shall supersede or modify
         
     | 
| 139 | 
         
            +
            the terms of any separate license agreement you may have executed
         
     | 
| 140 | 
         
            +
            with Licensor regarding such Contributions.
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
            6. Trademarks. This License does not grant permission to use the trade
         
     | 
| 143 | 
         
            +
            names, trademarks, service marks, or product names of the Licensor,
         
     | 
| 144 | 
         
            +
            except as required for reasonable and customary use in describing the
         
     | 
| 145 | 
         
            +
            origin of the Work and reproducing the content of the NOTICE file.
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
            7. Disclaimer of Warranty. Unless required by applicable law or
         
     | 
| 148 | 
         
            +
            agreed to in writing, Licensor provides the Work (and each
         
     | 
| 149 | 
         
            +
            Contributor provides its Contributions) on an "AS IS" BASIS,
         
     | 
| 150 | 
         
            +
            WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
         
     | 
| 151 | 
         
            +
            implied, including, without limitation, any warranties or conditions
         
     | 
| 152 | 
         
            +
            of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
         
     | 
| 153 | 
         
            +
            PARTICULAR PURPOSE. You are solely responsible for determining the
         
     | 
| 154 | 
         
            +
            appropriateness of using or redistributing the Work and assume any
         
     | 
| 155 | 
         
            +
            risks associated with Your exercise of permissions under this License.
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
            8. Limitation of Liability. In no event and under no legal theory,
         
     | 
| 158 | 
         
            +
            whether in tort (including negligence), contract, or otherwise,
         
     | 
| 159 | 
         
            +
            unless required by applicable law (such as deliberate and grossly
         
     | 
| 160 | 
         
            +
            negligent acts) or agreed to in writing, shall any Contributor be
         
     | 
| 161 | 
         
            +
            liable to You for damages, including any direct, indirect, special,
         
     | 
| 162 | 
         
            +
            incidental, or consequential damages of any character arising as a
         
     | 
| 163 | 
         
            +
            result of this License or out of the use or inability to use the
         
     | 
| 164 | 
         
            +
            Work (including but not limited to damages for loss of goodwill,
         
     | 
| 165 | 
         
            +
            work stoppage, computer failure or malfunction, or any and all
         
     | 
| 166 | 
         
            +
            other commercial damages or losses), even if such Contributor
         
     | 
| 167 | 
         
            +
            has been advised of the possibility of such damages.
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
            9. Accepting Warranty or Additional Liability. While redistributing
         
     | 
| 170 | 
         
            +
            the Work or Derivative Works thereof, You may choose to offer,
         
     | 
| 171 | 
         
            +
            and charge a fee for, acceptance of support, warranty, indemnity,
         
     | 
| 172 | 
         
            +
            or other liability obligations and/or rights consistent with this
         
     | 
| 173 | 
         
            +
            License. However, in accepting such obligations, You may act only
         
     | 
| 174 | 
         
            +
            on Your own behalf and on Your sole responsibility, not on behalf
         
     | 
| 175 | 
         
            +
            of any other Contributor, and only if You agree to indemnify,
         
     | 
| 176 | 
         
            +
            defend, and hold each Contributor harmless for any liability
         
     | 
| 177 | 
         
            +
            incurred by, or claims asserted against, such Contributor by reason
         
     | 
| 178 | 
         
            +
            of your accepting any such warranty or additional liability.
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
            10. This code is provided for research purposes only and is 
         
     | 
| 181 | 
         
            +
            not to be used for any commercial purposes. By using this code, 
         
     | 
| 182 | 
         
            +
            you agree that it will be used solely for academic research, scholarly work, 
         
     | 
| 183 | 
         
            +
            and non-commercial activities. Any use of this code for commercial purposes, 
         
     | 
| 184 | 
         
            +
            including but not limited to, selling, distributing, or incorporating it into 
         
     | 
| 185 | 
         
            +
            commercial products or services, is strictly prohibited. Violation of this 
         
     | 
| 186 | 
         
            +
            clause may result in legal actions and penalties.
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
            END OF TERMS AND CONDITIONS
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
            APPENDIX: How to apply the Apache License to your work.
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
            To apply the Apache License to your work, attach the following
         
     | 
| 193 | 
         
            +
            boilerplate notice, with the fields enclosed by brackets "[]"
         
     | 
| 194 | 
         
            +
            replaced with your own identifying information. (Don't include
         
     | 
| 195 | 
         
            +
            the brackets!)  The text should be enclosed in the appropriate
         
     | 
| 196 | 
         
            +
            comment syntax for the file format. We also recommend that a
         
     | 
| 197 | 
         
            +
            file or class name and description of purpose be included on the
         
     | 
| 198 | 
         
            +
            same "printed page" as the copyright notice for easier
         
     | 
| 199 | 
         
            +
            identification within third-party archives.
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
            Copyright [yyyy] [name of copyright owner]
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
            Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 204 | 
         
            +
            you may not use this file except in compliance with the License.
         
     | 
| 205 | 
         
            +
            You may obtain a copy of the License at
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
            http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
            Unless required by applicable law or agreed to in writing, software
         
     | 
| 210 | 
         
            +
            distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 211 | 
         
            +
            WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 212 | 
         
            +
            See the License for the specific language governing permissions and
         
     | 
| 213 | 
         
            +
            limitations under the License.
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
            Other dependencies and licenses (if such optional components are used):
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
            Components under BSD 3-Clause License:
         
     | 
| 220 | 
         
            +
            ------------------------------------------------
         
     | 
| 221 | 
         
            +
            1. numpy
         
     | 
| 222 | 
         
            +
            Copyright (c) 2005-2022, NumPy Developers.
         
     | 
| 223 | 
         
            +
            All rights reserved.
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
            2. pytorch
         
     | 
| 226 | 
         
            +
            Copyright (c) 2016-     Facebook, Inc            (Adam Paszke)
         
     | 
| 227 | 
         
            +
            Copyright (c) 2014-     Facebook, Inc            (Soumith Chintala)
         
     | 
| 228 | 
         
            +
            Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
         
     | 
| 229 | 
         
            +
            Copyright (c) 2012-2014 Deepmind Technologies    (Koray Kavukcuoglu)
         
     | 
| 230 | 
         
            +
            Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
         
     | 
| 231 | 
         
            +
            Copyright (c) 2011-2013 NYU                      (Clement Farabet)
         
     | 
| 232 | 
         
            +
            Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
         
     | 
| 233 | 
         
            +
            Copyright (c) 2006      Idiap Research Institute (Samy Bengio)
         
     | 
| 234 | 
         
            +
            Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
            3. torchvision
         
     | 
| 237 | 
         
            +
            Copyright (c) Soumith Chintala 2016, 
         
     | 
| 238 | 
         
            +
            All rights reserved.
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
            Redistribution and use in source and binary forms, with or without
         
     | 
| 241 | 
         
            +
            modification, are permitted provided that the following conditions are met:
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
            * Redistributions of source code must retain the above copyright notice, this
         
     | 
| 244 | 
         
            +
              list of conditions and the following disclaimer.
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
            * Redistributions in binary form must reproduce the above copyright notice,
         
     | 
| 247 | 
         
            +
              this list of conditions and the following disclaimer in the documentation
         
     | 
| 248 | 
         
            +
              and/or other materials provided with the distribution.
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
            * Neither the name of the copyright holder nor the names of its
         
     | 
| 251 | 
         
            +
              contributors may be used to endorse or promote products derived from
         
     | 
| 252 | 
         
            +
              this software without specific prior written permission.
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
            THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
         
     | 
| 255 | 
         
            +
            AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
         
     | 
| 256 | 
         
            +
            IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
         
     | 
| 257 | 
         
            +
            DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
         
     | 
| 258 | 
         
            +
            FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
         
     | 
| 259 | 
         
            +
            DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
         
     | 
| 260 | 
         
            +
            SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
         
     | 
| 261 | 
         
            +
            CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
         
     | 
| 262 | 
         
            +
            OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         
     | 
| 263 | 
         
            +
            OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
            Component under Apache v2 License:
         
     | 
| 266 | 
         
            +
            -----------------------------------------------------
         
     | 
| 267 | 
         
            +
            1. timm
         
     | 
| 268 | 
         
            +
            Copyright 2019 Ross Wightman
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
            Apache License
         
     | 
| 271 | 
         
            +
            Version 2.0, January 2004
         
     | 
| 272 | 
         
            +
            http://www.apache.org/licenses/
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
            TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
            1. Definitions.
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
            "License" shall mean the terms and conditions for use, reproduction,
         
     | 
| 279 | 
         
            +
            and distribution as defined by Sections 1 through 9 of this document.
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
            "Licensor" shall mean the copyright owner or entity authorized by
         
     | 
| 282 | 
         
            +
            the copyright owner that is granting the License.
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
            "Legal Entity" shall mean the union of the acting entity and all
         
     | 
| 285 | 
         
            +
            other entities that control, are controlled by, or are under common
         
     | 
| 286 | 
         
            +
            control with that entity. For the purposes of this definition,
         
     | 
| 287 | 
         
            +
            "control" means (i) the power, direct or indirect, to cause the
         
     | 
| 288 | 
         
            +
            direction or management of such entity, whether by contract or
         
     | 
| 289 | 
         
            +
            otherwise, or (ii) ownership of fifty percent (50%) or more of the
         
     | 
| 290 | 
         
            +
            outstanding shares, or (iii) beneficial ownership of such entity.
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
            "You" (or "Your") shall mean an individual or Legal Entity
         
     | 
| 293 | 
         
            +
            exercising permissions granted by this License.
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
            "Source" form shall mean the preferred form for making modifications,
         
     | 
| 296 | 
         
            +
            including but not limited to software source code, documentation
         
     | 
| 297 | 
         
            +
            source, and configuration files.
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
            "Object" form shall mean any form resulting from mechanical
         
     | 
| 300 | 
         
            +
            transformation or translation of a Source form, including but
         
     | 
| 301 | 
         
            +
            not limited to compiled object code, generated documentation,
         
     | 
| 302 | 
         
            +
            and conversions to other media types.
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
            "Work" shall mean the work of authorship, whether in Source or
         
     | 
| 305 | 
         
            +
            Object form, made available under the License, as indicated by a
         
     | 
| 306 | 
         
            +
            copyright notice that is included in or attached to the work
         
     | 
| 307 | 
         
            +
            (an example is provided in the Appendix below).
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
            "Derivative Works" shall mean any work, whether in Source or Object
         
     | 
| 310 | 
         
            +
            form, that is based on (or derived from) the Work and for which the
         
     | 
| 311 | 
         
            +
            editorial revisions, annotations, elaborations, or other modifications
         
     | 
| 312 | 
         
            +
            represent, as a whole, an original work of authorship. For the purposes
         
     | 
| 313 | 
         
            +
            of this License, Derivative Works shall not include works that remain
         
     | 
| 314 | 
         
            +
            separable from, or merely link (or bind by name) to the interfaces of,
         
     | 
| 315 | 
         
            +
            the Work and Derivative Works thereof.
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
            "Contribution" shall mean any work of authorship, including
         
     | 
| 318 | 
         
            +
            the original version of the Work and any modifications or additions
         
     | 
| 319 | 
         
            +
            to that Work or Derivative Works thereof, that is intentionally
         
     | 
| 320 | 
         
            +
            submitted to Licensor for inclusion in the Work by the copyright owner
         
     | 
| 321 | 
         
            +
            or by an individual or Legal Entity authorized to submit on behalf of
         
     | 
| 322 | 
         
            +
            the copyright owner. For the purposes of this definition, "submitted"
         
     | 
| 323 | 
         
            +
            means any form of electronic, verbal, or written communication sent
         
     | 
| 324 | 
         
            +
            to the Licensor or its representatives, including but not limited to
         
     | 
| 325 | 
         
            +
            communication on electronic mailing lists, source code control systems,
         
     | 
| 326 | 
         
            +
            and issue tracking systems that are managed by, or on behalf of, the
         
     | 
| 327 | 
         
            +
            Licensor for the purpose of discussing and improving the Work, but
         
     | 
| 328 | 
         
            +
            excluding communication that is conspicuously marked or otherwise
         
     | 
| 329 | 
         
            +
            designated in writing by the copyright owner as "Not a Contribution."
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
            "Contributor" shall mean Licensor and any individual or Legal Entity
         
     | 
| 332 | 
         
            +
            on behalf of whom a Contribution has been received by Licensor and
         
     | 
| 333 | 
         
            +
            subsequently incorporated within the Work.
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
            2. Grant of Copyright License. Subject to the terms and conditions of
         
     | 
| 336 | 
         
            +
            this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 337 | 
         
            +
            worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 338 | 
         
            +
            copyright license to reproduce, prepare Derivative Works of,
         
     | 
| 339 | 
         
            +
            publicly display, publicly perform, sublicense, and distribute the
         
     | 
| 340 | 
         
            +
            Work and such Derivative Works in Source or Object form.
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
            3. Grant of Patent License. Subject to the terms and conditions of
         
     | 
| 343 | 
         
            +
            this License, each Contributor hereby grants to You a perpetual,
         
     | 
| 344 | 
         
            +
            worldwide, non-exclusive, no-charge, royalty-free, irrevocable
         
     | 
| 345 | 
         
            +
            (except as stated in this section) patent license to make, have made,
         
     | 
| 346 | 
         
            +
            use, offer to sell, sell, import, and otherwise transfer the Work,
         
     | 
| 347 | 
         
            +
            where such license applies only to those patent claims licensable
         
     | 
| 348 | 
         
            +
            by such Contributor that are necessarily infringed by their
         
     | 
| 349 | 
         
            +
            Contribution(s) alone or by combination of their Contribution(s)
         
     | 
| 350 | 
         
            +
            with the Work to which such Contribution(s) was submitted. If You
         
     | 
| 351 | 
         
            +
            institute patent litigation against any entity (including a
         
     | 
| 352 | 
         
            +
            cross-claim or counterclaim in a lawsuit) alleging that the Work
         
     | 
| 353 | 
         
            +
            or a Contribution incorporated within the Work constitutes direct
         
     | 
| 354 | 
         
            +
            or contributory patent infringement, then any patent licenses
         
     | 
| 355 | 
         
            +
            granted to You under this License for that Work shall terminate
         
     | 
| 356 | 
         
            +
            as of the date such litigation is filed.
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
            4. Redistribution. You may reproduce and distribute copies of the
         
     | 
| 359 | 
         
            +
            Work or Derivative Works thereof in any medium, with or without
         
     | 
| 360 | 
         
            +
            modifications, and in Source or Object form, provided that You
         
     | 
| 361 | 
         
            +
            meet the following conditions:
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
            (a) You must give any other recipients of the Work or
         
     | 
| 364 | 
         
            +
            Derivative Works a copy of this License; and
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
            (b) You must cause any modified files to carry prominent notices
         
     | 
| 367 | 
         
            +
            stating that You changed the files; and
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
            (c) You must retain, in the Source form of any Derivative Works
         
     | 
| 370 | 
         
            +
            that You distribute, all copyright, patent, trademark, and
         
     | 
| 371 | 
         
            +
            attribution notices from the Source form of the Work,
         
     | 
| 372 | 
         
            +
            excluding those notices that do not pertain to any part of
         
     | 
| 373 | 
         
            +
            the Derivative Works; and
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
            (d) If the Work includes a "NOTICE" text file as part of its
         
     | 
| 376 | 
         
            +
            distribution, then any Derivative Works that You distribute must
         
     | 
| 377 | 
         
            +
            include a readable copy of the attribution notices contained
         
     | 
| 378 | 
         
            +
            within such NOTICE file, excluding those notices that do not
         
     | 
| 379 | 
         
            +
            pertain to any part of the Derivative Works, in at least one
         
     | 
| 380 | 
         
            +
            of the following places: within a NOTICE text file distributed
         
     | 
| 381 | 
         
            +
            as part of the Derivative Works; within the Source form or
         
     | 
| 382 | 
         
            +
            documentation, if provided along with the Derivative Works; or,
         
     | 
| 383 | 
         
            +
            within a display generated by the Derivative Works, if and
         
     | 
| 384 | 
         
            +
            wherever such third-party notices normally appear. The contents
         
     | 
| 385 | 
         
            +
            of the NOTICE file are for informational purposes only and
         
     | 
| 386 | 
         
            +
            do not modify the License. You may add Your own attribution
         
     | 
| 387 | 
         
            +
            notices within Derivative Works that You distribute, alongside
         
     | 
| 388 | 
         
            +
            or as an addendum to the NOTICE text from the Work, provided
         
     | 
| 389 | 
         
            +
            that such additional attribution notices cannot be construed
         
     | 
| 390 | 
         
            +
            as modifying the License.
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
            You may add Your own copyright statement to Your modifications and
         
     | 
| 393 | 
         
            +
            may provide additional or different license terms and conditions
         
     | 
| 394 | 
         
            +
            for use, reproduction, or distribution of Your modifications, or
         
     | 
| 395 | 
         
            +
            for any such Derivative Works as a whole, provided Your use,
         
     | 
| 396 | 
         
            +
            reproduction, and distribution of the Work otherwise complies with
         
     | 
| 397 | 
         
            +
            the conditions stated in this License.
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
            5. Submission of Contributions. Unless You explicitly state otherwise,
         
     | 
| 400 | 
         
            +
            any Contribution intentionally submitted for inclusion in the Work
         
     | 
| 401 | 
         
            +
            by You to the Licensor shall be under the terms and conditions of
         
     | 
| 402 | 
         
            +
            this License, without any additional terms or conditions.
         
     | 
| 403 | 
         
            +
            Notwithstanding the above, nothing herein shall supersede or modify
         
     | 
| 404 | 
         
            +
            the terms of any separate license agreement you may have executed
         
     | 
| 405 | 
         
            +
            with Licensor regarding such Contributions.
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
            6. Trademarks. This License does not grant permission to use the trade
         
     | 
| 408 | 
         
            +
            names, trademarks, service marks, or product names of the Licensor,
         
     | 
| 409 | 
         
            +
            except as required for reasonable and customary use in describing the
         
     | 
| 410 | 
         
            +
            origin of the Work and reproducing the content of the NOTICE file.
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
            7. Disclaimer of Warranty. Unless required by applicable law or
         
     | 
| 413 | 
         
            +
            agreed to in writing, Licensor provides the Work (and each
         
     | 
| 414 | 
         
            +
            Contributor provides its Contributions) on an "AS IS" BASIS,
         
     | 
| 415 | 
         
            +
            WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
         
     | 
| 416 | 
         
            +
            implied, including, without limitation, any warranties or conditions
         
     | 
| 417 | 
         
            +
            of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
         
     | 
| 418 | 
         
            +
            PARTICULAR PURPOSE. You are solely responsible for determining the
         
     | 
| 419 | 
         
            +
            appropriateness of using or redistributing the Work and assume any
         
     | 
| 420 | 
         
            +
            risks associated with Your exercise of permissions under this License.
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
            8. Limitation of Liability. In no event and under no legal theory,
         
     | 
| 423 | 
         
            +
            whether in tort (including negligence), contract, or otherwise,
         
     | 
| 424 | 
         
            +
            unless required by applicable law (such as deliberate and grossly
         
     | 
| 425 | 
         
            +
            negligent acts) or agreed to in writing, shall any Contributor be
         
     | 
| 426 | 
         
            +
            liable to You for damages, including any direct, indirect, special,
         
     | 
| 427 | 
         
            +
            incidental, or consequential damages of any character arising as a
         
     | 
| 428 | 
         
            +
            result of this License or out of the use or inability to use the
         
     | 
| 429 | 
         
            +
            Work (including but not limited to damages for loss of goodwill,
         
     | 
| 430 | 
         
            +
            work stoppage, computer failure or malfunction, or any and all
         
     | 
| 431 | 
         
            +
            other commercial damages or losses), even if such Contributor
         
     | 
| 432 | 
         
            +
            has been advised of the possibility of such damages.
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
            9. Accepting Warranty or Additional Liability. While redistributing
         
     | 
| 435 | 
         
            +
            the Work or Derivative Works thereof, You may choose to offer,
         
     | 
| 436 | 
         
            +
            and charge a fee for, acceptance of support, warranty, indemnity,
         
     | 
| 437 | 
         
            +
            or other liability obligations and/or rights consistent with this
         
     | 
| 438 | 
         
            +
            License. However, in accepting such obligations, You may act only
         
     | 
| 439 | 
         
            +
            on Your own behalf and on Your sole responsibility, not on behalf
         
     | 
| 440 | 
         
            +
            of any other Contributor, and only if You agree to indemnify,
         
     | 
| 441 | 
         
            +
            defend, and hold each Contributor harmless for any liability
         
     | 
| 442 | 
         
            +
            incurred by, or claims asserted against, such Contributor by reason
         
     | 
| 443 | 
         
            +
            of your accepting any such warranty or additional liability.
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
            END OF TERMS AND CONDITIONS
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
            APPENDIX: How to apply the Apache License to your work.
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
            To apply the Apache License to your work, attach the following
         
     | 
| 450 | 
         
            +
            boilerplate notice, with the fields enclosed by brackets "[]"
         
     | 
| 451 | 
         
            +
            replaced with your own identifying information. (Don't include
         
     | 
| 452 | 
         
            +
            the brackets!)  The text should be enclosed in the appropriate
         
     | 
| 453 | 
         
            +
            comment syntax for the file format. We also recommend that a
         
     | 
| 454 | 
         
            +
            file or class name and description of purpose be included on the
         
     | 
| 455 | 
         
            +
            same "printed page" as the copyright notice for easier
         
     | 
| 456 | 
         
            +
            identification within third-party archives.
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
            Copyright [yyyy] [name of copyright owner]
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
            Licensed under the Apache License, Version 2.0 (the "License");
         
     | 
| 461 | 
         
            +
            you may not use this file except in compliance with the License.
         
     | 
| 462 | 
         
            +
            You may obtain a copy of the License at
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
            http://www.apache.org/licenses/LICENSE-2.0
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
            Unless required by applicable law or agreed to in writing, software
         
     | 
| 467 | 
         
            +
            distributed under the License is distributed on an "AS IS" BASIS,
         
     | 
| 468 | 
         
            +
            WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         
     | 
| 469 | 
         
            +
            See the License for the specific language governing permissions and
         
     | 
| 470 | 
         
            +
            limitations under the License.
         
     | 
    	
        app.py
    ADDED
    
    | 
         @@ -0,0 +1,154 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import gradio as gr
         
     | 
| 2 | 
         
            +
            import os
         
     | 
| 3 | 
         
            +
            import sys
         
     | 
| 4 | 
         
            +
            import argparse
         
     | 
| 5 | 
         
            +
            import random
         
     | 
| 6 | 
         
            +
            from omegaconf import OmegaConf
         
     | 
| 7 | 
         
            +
            import torch
         
     | 
| 8 | 
         
            +
            import torchvision
         
     | 
| 9 | 
         
            +
            from pytorch_lightning import seed_everything
         
     | 
| 10 | 
         
            +
            from huggingface_hub import hf_hub_download
         
     | 
| 11 | 
         
            +
            from einops import repeat
         
     | 
| 12 | 
         
            +
            import torchvision.transforms as transforms
         
     | 
| 13 | 
         
            +
            from utils.utils import instantiate_from_config
         
     | 
| 14 | 
         
            +
            sys.path.insert(0, "scripts/evaluation")
         
     | 
| 15 | 
         
            +
            from funcs import (
         
     | 
| 16 | 
         
            +
                batch_ddim_sampling,
         
     | 
| 17 | 
         
            +
                load_model_checkpoint,
         
     | 
| 18 | 
         
            +
                get_latent_z,
         
     | 
| 19 | 
         
            +
                save_videos
         
     | 
| 20 | 
         
            +
            )
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            def download_model(self):
         
     | 
| 23 | 
         
            +
                REPO_ID = 'Doubiiu/DynamiCrafter'
         
     | 
| 24 | 
         
            +
                filename_list = ['model.ckpt']
         
     | 
| 25 | 
         
            +
                if not os.path.exists('./checkpoints/dynamicrafter_256_v1/'):
         
     | 
| 26 | 
         
            +
                    os.makedirs('./dynamicrafter_256_v1/')
         
     | 
| 27 | 
         
            +
                for filename in filename_list:
         
     | 
| 28 | 
         
            +
                    local_file = os.path.join('./checkpoints/dynamicrafter_256_v1/', filename)
         
     | 
| 29 | 
         
            +
                    if not os.path.exists(local_file):
         
     | 
| 30 | 
         
            +
                        hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_256_v1/', local_dir_use_symlinks=False)
         
     | 
| 31 | 
         
            +
                
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            def infer(image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
         
     | 
| 34 | 
         
            +
                download_model()
         
     | 
| 35 | 
         
            +
                ckpt_path='checkpoints/dynamicrafter_256_v1/model.ckpt'
         
     | 
| 36 | 
         
            +
                config_file='configs/inference_256_v1.0.yaml'
         
     | 
| 37 | 
         
            +
                config = OmegaConf.load(config_file)
         
     | 
| 38 | 
         
            +
                model_config = config.pop("model", OmegaConf.create())
         
     | 
| 39 | 
         
            +
                model_config['params']['unet_config']['params']['use_checkpoint']=False   
         
     | 
| 40 | 
         
            +
                model = instantiate_from_config(model_config)
         
     | 
| 41 | 
         
            +
                assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
         
     | 
| 42 | 
         
            +
                model = load_model_checkpoint(model, ckpt_path)
         
     | 
| 43 | 
         
            +
                model.eval()
         
     | 
| 44 | 
         
            +
                model = model.cuda()
         
     | 
| 45 | 
         
            +
                save_fps = 8
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                seed_everything(seed)
         
     | 
| 48 | 
         
            +
                transform = transforms.Compose([
         
     | 
| 49 | 
         
            +
                    transforms.Resize(256),
         
     | 
| 50 | 
         
            +
                    transforms.CenterCrop(256),
         
     | 
| 51 | 
         
            +
                    ])
         
     | 
| 52 | 
         
            +
                torch.cuda.empty_cache()
         
     | 
| 53 | 
         
            +
                print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
         
     | 
| 54 | 
         
            +
                start = time.time()
         
     | 
| 55 | 
         
            +
                if steps > 60:
         
     | 
| 56 | 
         
            +
                    steps = 60 
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                batch_size=1
         
     | 
| 59 | 
         
            +
                channels = model.model.diffusion_model.out_channels
         
     | 
| 60 | 
         
            +
                frames = model.temporal_length
         
     | 
| 61 | 
         
            +
                h, w = 256 // 8, 256 // 8
         
     | 
| 62 | 
         
            +
                noise_shape = [batch_size, channels, frames, h, w]
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                # text cond
         
     | 
| 65 | 
         
            +
                text_emb = model.get_learned_conditioning([prompt])
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                # img cond
         
     | 
| 68 | 
         
            +
                img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
         
     | 
| 69 | 
         
            +
                img_tensor = (img_tensor / 255. - 0.5) * 2
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                image_tensor_resized = transform(img_tensor) #3,256,256
         
     | 
| 72 | 
         
            +
                videos = image_tensor_resized.unsqueeze(0) # bchw
         
     | 
| 73 | 
         
            +
                
         
     | 
| 74 | 
         
            +
                z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
         
     | 
| 75 | 
         
            +
                
         
     | 
| 76 | 
         
            +
                img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
         
     | 
| 79 | 
         
            +
                img_emb = model.image_proj_model(cond_images)
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                imtext_cond = torch.cat([text_emb, img_emb], dim=1)
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                fs = torch.tensor([fs], dtype=torch.long, device=model.device)
         
     | 
| 84 | 
         
            +
                cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
         
     | 
| 85 | 
         
            +
                
         
     | 
| 86 | 
         
            +
                ## inference
         
     | 
| 87 | 
         
            +
                batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
         
     | 
| 88 | 
         
            +
                ## b,samples,c,t,h,w
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                video_path = './output.mp4'
         
     | 
| 91 | 
         
            +
                save_videos(batch_samples, './', filenames=['output'], fps=save_fps)
         
     | 
| 92 | 
         
            +
                model = model.cpu()
         
     | 
| 93 | 
         
            +
                return video_path
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            i2v_examples = [
         
     | 
| 101 | 
         
            +
                ['prompts/art.png', 'man fishing in a boat at sunset', 50, 7.5, 1.0, 3, 234],
         
     | 
| 102 | 
         
            +
                ['prompts/boy.png', 'boy walking on the street', 50, 7.5, 1.0, 3, 125],
         
     | 
| 103 | 
         
            +
                ['prompts/dance1.jpeg', 'two people dancing', 50, 7.5, 1.0, 3, 116],
         
     | 
| 104 | 
         
            +
                ['prompts/fire_and_beach.jpg', 'a campfire on the beach and the ocean waves in the background', 50, 7.5, 1.0, 3, 111],
         
     | 
| 105 | 
         
            +
                ['prompts/girl3.jpeg', 'girl talking and blinking', 50, 7.5, 1.0, 3, 111],
         
     | 
| 106 | 
         
            +
                ['prompts/guitar0.jpeg', 'bear playing guitar happily, snowing', 50, 7.5, 1.0, 3, 111],
         
     | 
| 107 | 
         
            +
            ]
         
     | 
| 108 | 
         
            +
            css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
            with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
         
     | 
| 111 | 
         
            +
                gr.Markdown("<div align='center'> <h1> DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors </span> </h1> \
         
     | 
| 112 | 
         
            +
                                <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
         
     | 
| 113 | 
         
            +
                                <a href='https://doubiiu.github.io/'>Jinbo Xing</a>, \
         
     | 
| 114 | 
         
            +
                                <a href='https://menghanxia.github.io/'>Menghan Xia</a>, <a href='https://yzhang2016.github.io/'>Yong Zhang</a>, \
         
     | 
| 115 | 
         
            +
                                <a href=''>Haoxin Chen</a>, <a href=''> Wangbo Yu</a>,\
         
     | 
| 116 | 
         
            +
                                <a href='https://github.com/hyliu'>Hanyuan Liu</a>, <a href='https://xinntao.github.io/'>Xintao Wang</a>,\
         
     | 
| 117 | 
         
            +
                                <a href='https://www.cse.cuhk.edu.hk/~ttwong/myself.html'>Tien-Tsin Wong</a>,\
         
     | 
| 118 | 
         
            +
                                <a href='https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=zh-CN'>Ying Shan</a>\
         
     | 
| 119 | 
         
            +
                            </h2> \
         
     | 
| 120 | 
         
            +
                                <a style='font-size:18px;color: #000000' href='https://arxiv.org/abs/2310.12190'> [ArXiv] </a>\
         
     | 
| 121 | 
         
            +
                                <a style='font-size:18px;color: #000000' href='https://doubiiu.github.io/projects/DynamiCrafter/'> [Project Page] </a> \
         
     | 
| 122 | 
         
            +
                                <a style='font-size:18px;color: #000000' href='https://github.com/Doubiiu/DynamiCrafter'> [Github] </a> </div>")
         
     | 
| 123 | 
         
            +
                
         
     | 
| 124 | 
         
            +
                with gr.Tab(label='ImageAnimation'):
         
     | 
| 125 | 
         
            +
                    with gr.Column():
         
     | 
| 126 | 
         
            +
                        with gr.Row():
         
     | 
| 127 | 
         
            +
                            with gr.Column():
         
     | 
| 128 | 
         
            +
                                with gr.Row():
         
     | 
| 129 | 
         
            +
                                    i2v_input_image = gr.Image(label="Input Image",elem_id="input_img")
         
     | 
| 130 | 
         
            +
                                with gr.Row():
         
     | 
| 131 | 
         
            +
                                    i2v_input_text = gr.Text(label='Prompts')
         
     | 
| 132 | 
         
            +
                                with gr.Row():
         
     | 
| 133 | 
         
            +
                                    i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=10000, step=1, value=123)
         
     | 
| 134 | 
         
            +
                                    i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
         
     | 
| 135 | 
         
            +
                                    i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
         
     | 
| 136 | 
         
            +
                                with gr.Row():
         
     | 
| 137 | 
         
            +
                                    i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
         
     | 
| 138 | 
         
            +
                                    i2v_motion = gr.Slider(minimum=1, maximum=4, step=1, elem_id="i2v_motion", label="Motion magnitude", value=3)
         
     | 
| 139 | 
         
            +
                                i2v_end_btn = gr.Button("Generate")
         
     | 
| 140 | 
         
            +
                            # with gr.Tab(label='Result'):
         
     | 
| 141 | 
         
            +
                            with gr.Row():
         
     | 
| 142 | 
         
            +
                                i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                        gr.Examples(examples=i2v_examples,
         
     | 
| 145 | 
         
            +
                                    inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
         
     | 
| 146 | 
         
            +
                                    outputs=[i2v_output_video],
         
     | 
| 147 | 
         
            +
                                    fn = infer,
         
     | 
| 148 | 
         
            +
                        )
         
     | 
| 149 | 
         
            +
                    i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed],
         
     | 
| 150 | 
         
            +
                                    outputs=[i2v_output_video],
         
     | 
| 151 | 
         
            +
                                    fn = infer
         
     | 
| 152 | 
         
            +
                    )
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
            dynamicrafter_iface.queue(max_size=12).launch(show_api=True)
         
     | 
    	
        configs/inference_256_v1.0.yaml
    ADDED
    
    | 
         @@ -0,0 +1,98 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            model:
         
     | 
| 2 | 
         
            +
              target: lvdm.models.ddpm3d.LatentVisualDiffusion
         
     | 
| 3 | 
         
            +
              params:
         
     | 
| 4 | 
         
            +
                linear_start: 0.00085
         
     | 
| 5 | 
         
            +
                linear_end: 0.012
         
     | 
| 6 | 
         
            +
                num_timesteps_cond: 1
         
     | 
| 7 | 
         
            +
                timesteps: 1000
         
     | 
| 8 | 
         
            +
                first_stage_key: video
         
     | 
| 9 | 
         
            +
                cond_stage_key: caption
         
     | 
| 10 | 
         
            +
                cond_stage_trainable: False
         
     | 
| 11 | 
         
            +
                conditioning_key: hybrid
         
     | 
| 12 | 
         
            +
                image_size: [32, 32]
         
     | 
| 13 | 
         
            +
                channels: 4
         
     | 
| 14 | 
         
            +
                scale_by_std: False
         
     | 
| 15 | 
         
            +
                scale_factor: 0.18215
         
     | 
| 16 | 
         
            +
                use_ema: False
         
     | 
| 17 | 
         
            +
                uncond_type: 'empty_seq'
         
     | 
| 18 | 
         
            +
                unet_config:
         
     | 
| 19 | 
         
            +
                  target: lvdm.modules.networks.openaimodel3d.UNetModel
         
     | 
| 20 | 
         
            +
                  params:
         
     | 
| 21 | 
         
            +
                    in_channels: 8
         
     | 
| 22 | 
         
            +
                    out_channels: 4
         
     | 
| 23 | 
         
            +
                    model_channels: 320
         
     | 
| 24 | 
         
            +
                    attention_resolutions:
         
     | 
| 25 | 
         
            +
                    - 4
         
     | 
| 26 | 
         
            +
                    - 2
         
     | 
| 27 | 
         
            +
                    - 1
         
     | 
| 28 | 
         
            +
                    num_res_blocks: 2
         
     | 
| 29 | 
         
            +
                    channel_mult:
         
     | 
| 30 | 
         
            +
                    - 1
         
     | 
| 31 | 
         
            +
                    - 2
         
     | 
| 32 | 
         
            +
                    - 4
         
     | 
| 33 | 
         
            +
                    - 4
         
     | 
| 34 | 
         
            +
                    dropout: 0.1
         
     | 
| 35 | 
         
            +
                    num_head_channels: 64
         
     | 
| 36 | 
         
            +
                    transformer_depth: 1
         
     | 
| 37 | 
         
            +
                    context_dim: 1024
         
     | 
| 38 | 
         
            +
                    use_linear: true
         
     | 
| 39 | 
         
            +
                    use_checkpoint: True
         
     | 
| 40 | 
         
            +
                    temporal_conv: True
         
     | 
| 41 | 
         
            +
                    temporal_attention: True
         
     | 
| 42 | 
         
            +
                    temporal_selfatt_only: true
         
     | 
| 43 | 
         
            +
                    use_relative_position: false
         
     | 
| 44 | 
         
            +
                    use_causal_attention: False
         
     | 
| 45 | 
         
            +
                    temporal_length: 16
         
     | 
| 46 | 
         
            +
                    addition_attention: true
         
     | 
| 47 | 
         
            +
                    image_cross_attention: true
         
     | 
| 48 | 
         
            +
                    image_cross_attention_scale_learnable: true
         
     | 
| 49 | 
         
            +
                    default_fs: 3
         
     | 
| 50 | 
         
            +
                    fs_condition: true
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                first_stage_config:
         
     | 
| 53 | 
         
            +
                  target: lvdm.models.autoencoder.AutoencoderKL
         
     | 
| 54 | 
         
            +
                  params:
         
     | 
| 55 | 
         
            +
                    embed_dim: 4
         
     | 
| 56 | 
         
            +
                    monitor: val/rec_loss
         
     | 
| 57 | 
         
            +
                    ddconfig:
         
     | 
| 58 | 
         
            +
                      double_z: True
         
     | 
| 59 | 
         
            +
                      z_channels: 4
         
     | 
| 60 | 
         
            +
                      resolution: 256
         
     | 
| 61 | 
         
            +
                      in_channels: 3
         
     | 
| 62 | 
         
            +
                      out_ch: 3
         
     | 
| 63 | 
         
            +
                      ch: 128
         
     | 
| 64 | 
         
            +
                      ch_mult:
         
     | 
| 65 | 
         
            +
                      - 1
         
     | 
| 66 | 
         
            +
                      - 2
         
     | 
| 67 | 
         
            +
                      - 4
         
     | 
| 68 | 
         
            +
                      - 4
         
     | 
| 69 | 
         
            +
                      num_res_blocks: 2
         
     | 
| 70 | 
         
            +
                      attn_resolutions: []
         
     | 
| 71 | 
         
            +
                      dropout: 0.0
         
     | 
| 72 | 
         
            +
                    lossconfig:
         
     | 
| 73 | 
         
            +
                      target: torch.nn.Identity
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                cond_stage_config:
         
     | 
| 76 | 
         
            +
                  target: lvdm.modules.encoders.condition.FrozenOpenCLIPEmbedder
         
     | 
| 77 | 
         
            +
                  params:
         
     | 
| 78 | 
         
            +
                    freeze: true
         
     | 
| 79 | 
         
            +
                    layer: "penultimate"
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                img_cond_stage_config:
         
     | 
| 82 | 
         
            +
                  target: lvdm.modules.encoders.condition.FrozenOpenCLIPImageEmbedderV2
         
     | 
| 83 | 
         
            +
                  params:
         
     | 
| 84 | 
         
            +
                    freeze: true
         
     | 
| 85 | 
         
            +
                
         
     | 
| 86 | 
         
            +
                image_proj_stage_config:
         
     | 
| 87 | 
         
            +
                  target: lvdm.modules.encoders.resampler.Resampler
         
     | 
| 88 | 
         
            +
                  params:
         
     | 
| 89 | 
         
            +
                    dim: 1024
         
     | 
| 90 | 
         
            +
                    depth: 4
         
     | 
| 91 | 
         
            +
                    dim_head: 64
         
     | 
| 92 | 
         
            +
                    heads: 12
         
     | 
| 93 | 
         
            +
                    num_queries: 16
         
     | 
| 94 | 
         
            +
                    embedding_dim: 1280
         
     | 
| 95 | 
         
            +
                    output_dim: 1024
         
     | 
| 96 | 
         
            +
                    ff_mult: 4
         
     | 
| 97 | 
         
            +
                    video_length: 16
         
     | 
| 98 | 
         
            +
             
     | 
    	
        lvdm/__pycache__/basics.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.28 kB). View file 
     | 
| 
         | 
    	
        lvdm/__pycache__/common.cpython-39.pyc
    ADDED
    
    | 
         Binary file (4.57 kB). View file 
     | 
| 
         | 
    	
        lvdm/__pycache__/distributions.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.84 kB). View file 
     | 
| 
         | 
    	
        lvdm/__pycache__/ema.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.03 kB). View file 
     | 
| 
         | 
    	
        lvdm/basics.py
    ADDED
    
    | 
         @@ -0,0 +1,100 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # adopted from
         
     | 
| 2 | 
         
            +
            # https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
         
     | 
| 3 | 
         
            +
            # and
         
     | 
| 4 | 
         
            +
            # https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 5 | 
         
            +
            # and
         
     | 
| 6 | 
         
            +
            # https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
         
     | 
| 7 | 
         
            +
            #
         
     | 
| 8 | 
         
            +
            # thanks!
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            import torch.nn as nn
         
     | 
| 11 | 
         
            +
            from utils.utils import instantiate_from_config
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def disabled_train(self, mode=True):
         
     | 
| 15 | 
         
            +
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 16 | 
         
            +
                does not change anymore."""
         
     | 
| 17 | 
         
            +
                return self
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            def zero_module(module):
         
     | 
| 20 | 
         
            +
                """
         
     | 
| 21 | 
         
            +
                Zero out the parameters of a module and return it.
         
     | 
| 22 | 
         
            +
                """
         
     | 
| 23 | 
         
            +
                for p in module.parameters():
         
     | 
| 24 | 
         
            +
                    p.detach().zero_()
         
     | 
| 25 | 
         
            +
                return module
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            def scale_module(module, scale):
         
     | 
| 28 | 
         
            +
                """
         
     | 
| 29 | 
         
            +
                Scale the parameters of a module and return it.
         
     | 
| 30 | 
         
            +
                """
         
     | 
| 31 | 
         
            +
                for p in module.parameters():
         
     | 
| 32 | 
         
            +
                    p.detach().mul_(scale)
         
     | 
| 33 | 
         
            +
                return module
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            def conv_nd(dims, *args, **kwargs):
         
     | 
| 37 | 
         
            +
                """
         
     | 
| 38 | 
         
            +
                Create a 1D, 2D, or 3D convolution module.
         
     | 
| 39 | 
         
            +
                """
         
     | 
| 40 | 
         
            +
                if dims == 1:
         
     | 
| 41 | 
         
            +
                    return nn.Conv1d(*args, **kwargs)
         
     | 
| 42 | 
         
            +
                elif dims == 2:
         
     | 
| 43 | 
         
            +
                    return nn.Conv2d(*args, **kwargs)
         
     | 
| 44 | 
         
            +
                elif dims == 3:
         
     | 
| 45 | 
         
            +
                    return nn.Conv3d(*args, **kwargs)
         
     | 
| 46 | 
         
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
            def linear(*args, **kwargs):
         
     | 
| 50 | 
         
            +
                """
         
     | 
| 51 | 
         
            +
                Create a linear module.
         
     | 
| 52 | 
         
            +
                """
         
     | 
| 53 | 
         
            +
                return nn.Linear(*args, **kwargs)
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def avg_pool_nd(dims, *args, **kwargs):
         
     | 
| 57 | 
         
            +
                """
         
     | 
| 58 | 
         
            +
                Create a 1D, 2D, or 3D average pooling module.
         
     | 
| 59 | 
         
            +
                """
         
     | 
| 60 | 
         
            +
                if dims == 1:
         
     | 
| 61 | 
         
            +
                    return nn.AvgPool1d(*args, **kwargs)
         
     | 
| 62 | 
         
            +
                elif dims == 2:
         
     | 
| 63 | 
         
            +
                    return nn.AvgPool2d(*args, **kwargs)
         
     | 
| 64 | 
         
            +
                elif dims == 3:
         
     | 
| 65 | 
         
            +
                    return nn.AvgPool3d(*args, **kwargs)
         
     | 
| 66 | 
         
            +
                raise ValueError(f"unsupported dimensions: {dims}")
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            def nonlinearity(type='silu'):
         
     | 
| 70 | 
         
            +
                if type == 'silu':
         
     | 
| 71 | 
         
            +
                    return nn.SiLU()
         
     | 
| 72 | 
         
            +
                elif type == 'leaky_relu':
         
     | 
| 73 | 
         
            +
                    return nn.LeakyReLU()
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
            class GroupNormSpecific(nn.GroupNorm):
         
     | 
| 77 | 
         
            +
                def forward(self, x):
         
     | 
| 78 | 
         
            +
                    return super().forward(x.float()).type(x.dtype)
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            def normalization(channels, num_groups=32):
         
     | 
| 82 | 
         
            +
                """
         
     | 
| 83 | 
         
            +
                Make a standard normalization layer.
         
     | 
| 84 | 
         
            +
                :param channels: number of input channels.
         
     | 
| 85 | 
         
            +
                :return: an nn.Module for normalization.
         
     | 
| 86 | 
         
            +
                """
         
     | 
| 87 | 
         
            +
                return GroupNormSpecific(num_groups, channels)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            class HybridConditioner(nn.Module):
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                def __init__(self, c_concat_config, c_crossattn_config):
         
     | 
| 93 | 
         
            +
                    super().__init__()
         
     | 
| 94 | 
         
            +
                    self.concat_conditioner = instantiate_from_config(c_concat_config)
         
     | 
| 95 | 
         
            +
                    self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                def forward(self, c_concat, c_crossattn):
         
     | 
| 98 | 
         
            +
                    c_concat = self.concat_conditioner(c_concat)
         
     | 
| 99 | 
         
            +
                    c_crossattn = self.crossattn_conditioner(c_crossattn)
         
     | 
| 100 | 
         
            +
                    return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
         
     | 
    	
        lvdm/common.py
    ADDED
    
    | 
         @@ -0,0 +1,94 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
            from inspect import isfunction
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            from torch import nn
         
     | 
| 5 | 
         
            +
            import torch.distributed as dist
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            def gather_data(data, return_np=True):
         
     | 
| 9 | 
         
            +
                ''' gather data from multiple processes to one list '''
         
     | 
| 10 | 
         
            +
                data_list = [torch.zeros_like(data) for _ in range(dist.get_world_size())]
         
     | 
| 11 | 
         
            +
                dist.all_gather(data_list, data)  # gather not supported with NCCL
         
     | 
| 12 | 
         
            +
                if return_np:
         
     | 
| 13 | 
         
            +
                    data_list = [data.cpu().numpy() for data in data_list]
         
     | 
| 14 | 
         
            +
                return data_list
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            def autocast(f):
         
     | 
| 17 | 
         
            +
                def do_autocast(*args, **kwargs):
         
     | 
| 18 | 
         
            +
                    with torch.cuda.amp.autocast(enabled=True,
         
     | 
| 19 | 
         
            +
                                                 dtype=torch.get_autocast_gpu_dtype(),
         
     | 
| 20 | 
         
            +
                                                 cache_enabled=torch.is_autocast_cache_enabled()):
         
     | 
| 21 | 
         
            +
                        return f(*args, **kwargs)
         
     | 
| 22 | 
         
            +
                return do_autocast
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            def extract_into_tensor(a, t, x_shape):
         
     | 
| 26 | 
         
            +
                b, *_ = t.shape
         
     | 
| 27 | 
         
            +
                out = a.gather(-1, t)
         
     | 
| 28 | 
         
            +
                return out.reshape(b, *((1,) * (len(x_shape) - 1)))
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            def noise_like(shape, device, repeat=False):
         
     | 
| 32 | 
         
            +
                repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
         
     | 
| 33 | 
         
            +
                noise = lambda: torch.randn(shape, device=device)
         
     | 
| 34 | 
         
            +
                return repeat_noise() if repeat else noise()
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            def default(val, d):
         
     | 
| 38 | 
         
            +
                if exists(val):
         
     | 
| 39 | 
         
            +
                    return val
         
     | 
| 40 | 
         
            +
                return d() if isfunction(d) else d
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            def exists(val):
         
     | 
| 43 | 
         
            +
                return val is not None
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            def identity(*args, **kwargs):
         
     | 
| 46 | 
         
            +
                return nn.Identity()
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            def uniq(arr):
         
     | 
| 49 | 
         
            +
                return{el: True for el in arr}.keys()
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            def mean_flat(tensor):
         
     | 
| 52 | 
         
            +
                """
         
     | 
| 53 | 
         
            +
                Take the mean over all non-batch dimensions.
         
     | 
| 54 | 
         
            +
                """
         
     | 
| 55 | 
         
            +
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            def ismap(x):
         
     | 
| 58 | 
         
            +
                if not isinstance(x, torch.Tensor):
         
     | 
| 59 | 
         
            +
                    return False
         
     | 
| 60 | 
         
            +
                return (len(x.shape) == 4) and (x.shape[1] > 3)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            def isimage(x):
         
     | 
| 63 | 
         
            +
                if not isinstance(x,torch.Tensor):
         
     | 
| 64 | 
         
            +
                    return False
         
     | 
| 65 | 
         
            +
                return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            def max_neg_value(t):
         
     | 
| 68 | 
         
            +
                return -torch.finfo(t.dtype).max
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
            def shape_to_str(x):
         
     | 
| 71 | 
         
            +
                shape_str = "x".join([str(x) for x in x.shape])
         
     | 
| 72 | 
         
            +
                return shape_str
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            def init_(tensor):
         
     | 
| 75 | 
         
            +
                dim = tensor.shape[-1]
         
     | 
| 76 | 
         
            +
                std = 1 / math.sqrt(dim)
         
     | 
| 77 | 
         
            +
                tensor.uniform_(-std, std)
         
     | 
| 78 | 
         
            +
                return tensor
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            ckpt = torch.utils.checkpoint.checkpoint
         
     | 
| 81 | 
         
            +
            def checkpoint(func, inputs, params, flag):
         
     | 
| 82 | 
         
            +
                """
         
     | 
| 83 | 
         
            +
                Evaluate a function without caching intermediate activations, allowing for
         
     | 
| 84 | 
         
            +
                reduced memory at the expense of extra compute in the backward pass.
         
     | 
| 85 | 
         
            +
                :param func: the function to evaluate.
         
     | 
| 86 | 
         
            +
                :param inputs: the argument sequence to pass to `func`.
         
     | 
| 87 | 
         
            +
                :param params: a sequence of parameters `func` depends on but does not
         
     | 
| 88 | 
         
            +
                               explicitly take as arguments.
         
     | 
| 89 | 
         
            +
                :param flag: if False, disable gradient checkpointing.
         
     | 
| 90 | 
         
            +
                """
         
     | 
| 91 | 
         
            +
                if flag:
         
     | 
| 92 | 
         
            +
                    return ckpt(func, *inputs, use_reentrant=False)
         
     | 
| 93 | 
         
            +
                else:
         
     | 
| 94 | 
         
            +
                    return func(*inputs)
         
     | 
    	
        lvdm/distributions.py
    ADDED
    
    | 
         @@ -0,0 +1,95 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class AbstractDistribution:
         
     | 
| 6 | 
         
            +
                def sample(self):
         
     | 
| 7 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
                def mode(self):
         
     | 
| 10 | 
         
            +
                    raise NotImplementedError()
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class DiracDistribution(AbstractDistribution):
         
     | 
| 14 | 
         
            +
                def __init__(self, value):
         
     | 
| 15 | 
         
            +
                    self.value = value
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def sample(self):
         
     | 
| 18 | 
         
            +
                    return self.value
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                def mode(self):
         
     | 
| 21 | 
         
            +
                    return self.value
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            class DiagonalGaussianDistribution(object):
         
     | 
| 25 | 
         
            +
                def __init__(self, parameters, deterministic=False):
         
     | 
| 26 | 
         
            +
                    self.parameters = parameters
         
     | 
| 27 | 
         
            +
                    self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
         
     | 
| 28 | 
         
            +
                    self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
         
     | 
| 29 | 
         
            +
                    self.deterministic = deterministic
         
     | 
| 30 | 
         
            +
                    self.std = torch.exp(0.5 * self.logvar)
         
     | 
| 31 | 
         
            +
                    self.var = torch.exp(self.logvar)
         
     | 
| 32 | 
         
            +
                    if self.deterministic:
         
     | 
| 33 | 
         
            +
                        self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                def sample(self, noise=None):
         
     | 
| 36 | 
         
            +
                    if noise is None:
         
     | 
| 37 | 
         
            +
                        noise = torch.randn(self.mean.shape)
         
     | 
| 38 | 
         
            +
                    
         
     | 
| 39 | 
         
            +
                    x = self.mean + self.std * noise.to(device=self.parameters.device)
         
     | 
| 40 | 
         
            +
                    return x
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                def kl(self, other=None):
         
     | 
| 43 | 
         
            +
                    if self.deterministic:
         
     | 
| 44 | 
         
            +
                        return torch.Tensor([0.])
         
     | 
| 45 | 
         
            +
                    else:
         
     | 
| 46 | 
         
            +
                        if other is None:
         
     | 
| 47 | 
         
            +
                            return 0.5 * torch.sum(torch.pow(self.mean, 2)
         
     | 
| 48 | 
         
            +
                                                   + self.var - 1.0 - self.logvar,
         
     | 
| 49 | 
         
            +
                                                   dim=[1, 2, 3])
         
     | 
| 50 | 
         
            +
                        else:
         
     | 
| 51 | 
         
            +
                            return 0.5 * torch.sum(
         
     | 
| 52 | 
         
            +
                                torch.pow(self.mean - other.mean, 2) / other.var
         
     | 
| 53 | 
         
            +
                                + self.var / other.var - 1.0 - self.logvar + other.logvar,
         
     | 
| 54 | 
         
            +
                                dim=[1, 2, 3])
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                def nll(self, sample, dims=[1,2,3]):
         
     | 
| 57 | 
         
            +
                    if self.deterministic:
         
     | 
| 58 | 
         
            +
                        return torch.Tensor([0.])
         
     | 
| 59 | 
         
            +
                    logtwopi = np.log(2.0 * np.pi)
         
     | 
| 60 | 
         
            +
                    return 0.5 * torch.sum(
         
     | 
| 61 | 
         
            +
                        logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
         
     | 
| 62 | 
         
            +
                        dim=dims)
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                def mode(self):
         
     | 
| 65 | 
         
            +
                    return self.mean
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
            def normal_kl(mean1, logvar1, mean2, logvar2):
         
     | 
| 69 | 
         
            +
                """
         
     | 
| 70 | 
         
            +
                source: https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/losses.py#L12
         
     | 
| 71 | 
         
            +
                Compute the KL divergence between two gaussians.
         
     | 
| 72 | 
         
            +
                Shapes are automatically broadcasted, so batches can be compared to
         
     | 
| 73 | 
         
            +
                scalars, among other use cases.
         
     | 
| 74 | 
         
            +
                """
         
     | 
| 75 | 
         
            +
                tensor = None
         
     | 
| 76 | 
         
            +
                for obj in (mean1, logvar1, mean2, logvar2):
         
     | 
| 77 | 
         
            +
                    if isinstance(obj, torch.Tensor):
         
     | 
| 78 | 
         
            +
                        tensor = obj
         
     | 
| 79 | 
         
            +
                        break
         
     | 
| 80 | 
         
            +
                assert tensor is not None, "at least one argument must be a Tensor"
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                # Force variances to be Tensors. Broadcasting helps convert scalars to
         
     | 
| 83 | 
         
            +
                # Tensors, but it does not work for torch.exp().
         
     | 
| 84 | 
         
            +
                logvar1, logvar2 = [
         
     | 
| 85 | 
         
            +
                    x if isinstance(x, torch.Tensor) else torch.tensor(x).to(tensor)
         
     | 
| 86 | 
         
            +
                    for x in (logvar1, logvar2)
         
     | 
| 87 | 
         
            +
                ]
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                return 0.5 * (
         
     | 
| 90 | 
         
            +
                    -1.0
         
     | 
| 91 | 
         
            +
                    + logvar2
         
     | 
| 92 | 
         
            +
                    - logvar1
         
     | 
| 93 | 
         
            +
                    + torch.exp(logvar1 - logvar2)
         
     | 
| 94 | 
         
            +
                    + ((mean1 - mean2) ** 2) * torch.exp(-logvar2)
         
     | 
| 95 | 
         
            +
                )
         
     | 
    	
        lvdm/ema.py
    ADDED
    
    | 
         @@ -0,0 +1,76 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch import nn
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            class LitEma(nn.Module):
         
     | 
| 6 | 
         
            +
                def __init__(self, model, decay=0.9999, use_num_upates=True):
         
     | 
| 7 | 
         
            +
                    super().__init__()
         
     | 
| 8 | 
         
            +
                    if decay < 0.0 or decay > 1.0:
         
     | 
| 9 | 
         
            +
                        raise ValueError('Decay must be between 0 and 1')
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
                    self.m_name2s_name = {}
         
     | 
| 12 | 
         
            +
                    self.register_buffer('decay', torch.tensor(decay, dtype=torch.float32))
         
     | 
| 13 | 
         
            +
                    self.register_buffer('num_updates', torch.tensor(0,dtype=torch.int) if use_num_upates
         
     | 
| 14 | 
         
            +
                                         else torch.tensor(-1,dtype=torch.int))
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
                    for name, p in model.named_parameters():
         
     | 
| 17 | 
         
            +
                        if p.requires_grad:
         
     | 
| 18 | 
         
            +
                            #remove as '.'-character is not allowed in buffers
         
     | 
| 19 | 
         
            +
                            s_name = name.replace('.','')
         
     | 
| 20 | 
         
            +
                            self.m_name2s_name.update({name:s_name})
         
     | 
| 21 | 
         
            +
                            self.register_buffer(s_name,p.clone().detach().data)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                    self.collected_params = []
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
                def forward(self,model):
         
     | 
| 26 | 
         
            +
                    decay = self.decay
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
                    if self.num_updates >= 0:
         
     | 
| 29 | 
         
            +
                        self.num_updates += 1
         
     | 
| 30 | 
         
            +
                        decay = min(self.decay,(1 + self.num_updates) / (10 + self.num_updates))
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                    one_minus_decay = 1.0 - decay
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    with torch.no_grad():
         
     | 
| 35 | 
         
            +
                        m_param = dict(model.named_parameters())
         
     | 
| 36 | 
         
            +
                        shadow_params = dict(self.named_buffers())
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                        for key in m_param:
         
     | 
| 39 | 
         
            +
                            if m_param[key].requires_grad:
         
     | 
| 40 | 
         
            +
                                sname = self.m_name2s_name[key]
         
     | 
| 41 | 
         
            +
                                shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
         
     | 
| 42 | 
         
            +
                                shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
         
     | 
| 43 | 
         
            +
                            else:
         
     | 
| 44 | 
         
            +
                                assert not key in self.m_name2s_name
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                def copy_to(self, model):
         
     | 
| 47 | 
         
            +
                    m_param = dict(model.named_parameters())
         
     | 
| 48 | 
         
            +
                    shadow_params = dict(self.named_buffers())
         
     | 
| 49 | 
         
            +
                    for key in m_param:
         
     | 
| 50 | 
         
            +
                        if m_param[key].requires_grad:
         
     | 
| 51 | 
         
            +
                            m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
         
     | 
| 52 | 
         
            +
                        else:
         
     | 
| 53 | 
         
            +
                            assert not key in self.m_name2s_name
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                def store(self, parameters):
         
     | 
| 56 | 
         
            +
                    """
         
     | 
| 57 | 
         
            +
                    Save the current parameters for restoring later.
         
     | 
| 58 | 
         
            +
                    Args:
         
     | 
| 59 | 
         
            +
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 60 | 
         
            +
                        temporarily stored.
         
     | 
| 61 | 
         
            +
                    """
         
     | 
| 62 | 
         
            +
                    self.collected_params = [param.clone() for param in parameters]
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                def restore(self, parameters):
         
     | 
| 65 | 
         
            +
                    """
         
     | 
| 66 | 
         
            +
                    Restore the parameters stored with the `store` method.
         
     | 
| 67 | 
         
            +
                    Useful to validate the model with EMA parameters without affecting the
         
     | 
| 68 | 
         
            +
                    original optimization process. Store the parameters before the
         
     | 
| 69 | 
         
            +
                    `copy_to` method. After validation (or model saving), use this to
         
     | 
| 70 | 
         
            +
                    restore the former parameters.
         
     | 
| 71 | 
         
            +
                    Args:
         
     | 
| 72 | 
         
            +
                      parameters: Iterable of `torch.nn.Parameter`; the parameters to be
         
     | 
| 73 | 
         
            +
                        updated with the stored parameters.
         
     | 
| 74 | 
         
            +
                    """
         
     | 
| 75 | 
         
            +
                    for c_param, param in zip(self.collected_params, parameters):
         
     | 
| 76 | 
         
            +
                        param.data.copy_(c_param.data)
         
     | 
    	
        lvdm/models/__pycache__/autoencoder.cpython-39.pyc
    ADDED
    
    | 
         Binary file (7.25 kB). View file 
     | 
| 
         | 
    	
        lvdm/models/__pycache__/ddpm3d.cpython-39.pyc
    ADDED
    
    | 
         Binary file (21.6 kB). View file 
     | 
| 
         | 
    	
        lvdm/models/__pycache__/utils_diffusion.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.93 kB). View file 
     | 
| 
         | 
    	
        lvdm/models/autoencoder.py
    ADDED
    
    | 
         @@ -0,0 +1,219 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            from einops import rearrange
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 8 | 
         
            +
            from lvdm.modules.networks.ae_modules import Encoder, Decoder
         
     | 
| 9 | 
         
            +
            from lvdm.distributions import DiagonalGaussianDistribution
         
     | 
| 10 | 
         
            +
            from utils.utils import instantiate_from_config
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class AutoencoderKL(pl.LightningModule):
         
     | 
| 14 | 
         
            +
                def __init__(self,
         
     | 
| 15 | 
         
            +
                             ddconfig,
         
     | 
| 16 | 
         
            +
                             lossconfig,
         
     | 
| 17 | 
         
            +
                             embed_dim,
         
     | 
| 18 | 
         
            +
                             ckpt_path=None,
         
     | 
| 19 | 
         
            +
                             ignore_keys=[],
         
     | 
| 20 | 
         
            +
                             image_key="image",
         
     | 
| 21 | 
         
            +
                             colorize_nlabels=None,
         
     | 
| 22 | 
         
            +
                             monitor=None,
         
     | 
| 23 | 
         
            +
                             test=False,
         
     | 
| 24 | 
         
            +
                             logdir=None,
         
     | 
| 25 | 
         
            +
                             input_dim=4,
         
     | 
| 26 | 
         
            +
                             test_args=None,
         
     | 
| 27 | 
         
            +
                             ):
         
     | 
| 28 | 
         
            +
                    super().__init__()
         
     | 
| 29 | 
         
            +
                    self.image_key = image_key
         
     | 
| 30 | 
         
            +
                    self.encoder = Encoder(**ddconfig)
         
     | 
| 31 | 
         
            +
                    self.decoder = Decoder(**ddconfig)
         
     | 
| 32 | 
         
            +
                    self.loss = instantiate_from_config(lossconfig)
         
     | 
| 33 | 
         
            +
                    assert ddconfig["double_z"]
         
     | 
| 34 | 
         
            +
                    self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1)
         
     | 
| 35 | 
         
            +
                    self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
         
     | 
| 36 | 
         
            +
                    self.embed_dim = embed_dim
         
     | 
| 37 | 
         
            +
                    self.input_dim = input_dim
         
     | 
| 38 | 
         
            +
                    self.test = test
         
     | 
| 39 | 
         
            +
                    self.test_args = test_args
         
     | 
| 40 | 
         
            +
                    self.logdir = logdir
         
     | 
| 41 | 
         
            +
                    if colorize_nlabels is not None:
         
     | 
| 42 | 
         
            +
                        assert type(colorize_nlabels)==int
         
     | 
| 43 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
         
     | 
| 44 | 
         
            +
                    if monitor is not None:
         
     | 
| 45 | 
         
            +
                        self.monitor = monitor
         
     | 
| 46 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 47 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
         
     | 
| 48 | 
         
            +
                    if self.test:
         
     | 
| 49 | 
         
            +
                        self.init_test()
         
     | 
| 50 | 
         
            +
                
         
     | 
| 51 | 
         
            +
                def init_test(self,):
         
     | 
| 52 | 
         
            +
                    self.test = True
         
     | 
| 53 | 
         
            +
                    save_dir = os.path.join(self.logdir, "test")
         
     | 
| 54 | 
         
            +
                    if 'ckpt' in self.test_args:
         
     | 
| 55 | 
         
            +
                        ckpt_name = os.path.basename(self.test_args.ckpt).split('.ckpt')[0] + f'_epoch{self._cur_epoch}'
         
     | 
| 56 | 
         
            +
                        self.root = os.path.join(save_dir, ckpt_name)
         
     | 
| 57 | 
         
            +
                    else:
         
     | 
| 58 | 
         
            +
                        self.root = save_dir
         
     | 
| 59 | 
         
            +
                    if 'test_subdir' in self.test_args:
         
     | 
| 60 | 
         
            +
                        self.root = os.path.join(save_dir, self.test_args.test_subdir)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    self.root_zs = os.path.join(self.root, "zs")
         
     | 
| 63 | 
         
            +
                    self.root_dec = os.path.join(self.root, "reconstructions")
         
     | 
| 64 | 
         
            +
                    self.root_inputs = os.path.join(self.root, "inputs")
         
     | 
| 65 | 
         
            +
                    os.makedirs(self.root, exist_ok=True)
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                    if self.test_args.save_z:
         
     | 
| 68 | 
         
            +
                        os.makedirs(self.root_zs, exist_ok=True)
         
     | 
| 69 | 
         
            +
                    if self.test_args.save_reconstruction:
         
     | 
| 70 | 
         
            +
                        os.makedirs(self.root_dec, exist_ok=True)
         
     | 
| 71 | 
         
            +
                    if self.test_args.save_input:
         
     | 
| 72 | 
         
            +
                        os.makedirs(self.root_inputs, exist_ok=True)
         
     | 
| 73 | 
         
            +
                    assert(self.test_args is not None)
         
     | 
| 74 | 
         
            +
                    self.test_maximum = getattr(self.test_args, 'test_maximum', None) 
         
     | 
| 75 | 
         
            +
                    self.count = 0
         
     | 
| 76 | 
         
            +
                    self.eval_metrics = {}
         
     | 
| 77 | 
         
            +
                    self.decodes = []
         
     | 
| 78 | 
         
            +
                    self.save_decode_samples = 2048
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list()):
         
     | 
| 81 | 
         
            +
                    sd = torch.load(path, map_location="cpu")
         
     | 
| 82 | 
         
            +
                    try:
         
     | 
| 83 | 
         
            +
                        self._cur_epoch = sd['epoch']
         
     | 
| 84 | 
         
            +
                        sd = sd["state_dict"]
         
     | 
| 85 | 
         
            +
                    except:
         
     | 
| 86 | 
         
            +
                        self._cur_epoch = 'null'
         
     | 
| 87 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 88 | 
         
            +
                    for k in keys:
         
     | 
| 89 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 90 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 91 | 
         
            +
                                print("Deleting key {} from state_dict.".format(k))
         
     | 
| 92 | 
         
            +
                                del sd[k]
         
     | 
| 93 | 
         
            +
                    self.load_state_dict(sd, strict=False)
         
     | 
| 94 | 
         
            +
                    # self.load_state_dict(sd, strict=True)
         
     | 
| 95 | 
         
            +
                    print(f"Restored from {path}")
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                def encode(self, x, **kwargs):
         
     | 
| 98 | 
         
            +
                    
         
     | 
| 99 | 
         
            +
                    h = self.encoder(x)
         
     | 
| 100 | 
         
            +
                    moments = self.quant_conv(h)
         
     | 
| 101 | 
         
            +
                    posterior = DiagonalGaussianDistribution(moments)
         
     | 
| 102 | 
         
            +
                    return posterior
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                def decode(self, z, **kwargs):
         
     | 
| 105 | 
         
            +
                    z = self.post_quant_conv(z)
         
     | 
| 106 | 
         
            +
                    dec = self.decoder(z)
         
     | 
| 107 | 
         
            +
                    return dec
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                def forward(self, input, sample_posterior=True):
         
     | 
| 110 | 
         
            +
                    posterior = self.encode(input)
         
     | 
| 111 | 
         
            +
                    if sample_posterior:
         
     | 
| 112 | 
         
            +
                        z = posterior.sample()
         
     | 
| 113 | 
         
            +
                    else:
         
     | 
| 114 | 
         
            +
                        z = posterior.mode()
         
     | 
| 115 | 
         
            +
                    dec = self.decode(z)
         
     | 
| 116 | 
         
            +
                    return dec, posterior
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 119 | 
         
            +
                    x = batch[k]
         
     | 
| 120 | 
         
            +
                    if x.dim() == 5 and self.input_dim == 4:
         
     | 
| 121 | 
         
            +
                        b,c,t,h,w = x.shape
         
     | 
| 122 | 
         
            +
                        self.b = b
         
     | 
| 123 | 
         
            +
                        self.t = t 
         
     | 
| 124 | 
         
            +
                        x = rearrange(x, 'b c t h w -> (b t) c h w')
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    return x
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                def training_step(self, batch, batch_idx, optimizer_idx):
         
     | 
| 129 | 
         
            +
                    inputs = self.get_input(batch, self.image_key)
         
     | 
| 130 | 
         
            +
                    reconstructions, posterior = self(inputs)
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    if optimizer_idx == 0:
         
     | 
| 133 | 
         
            +
                        # train encoder+decoder+logvar
         
     | 
| 134 | 
         
            +
                        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 135 | 
         
            +
                                                        last_layer=self.get_last_layer(), split="train")
         
     | 
| 136 | 
         
            +
                        self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 137 | 
         
            +
                        self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 138 | 
         
            +
                        return aeloss
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    if optimizer_idx == 1:
         
     | 
| 141 | 
         
            +
                        # train the discriminator
         
     | 
| 142 | 
         
            +
                        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
         
     | 
| 143 | 
         
            +
                                                            last_layer=self.get_last_layer(), split="train")
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                        self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
         
     | 
| 146 | 
         
            +
                        self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
         
     | 
| 147 | 
         
            +
                        return discloss
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                def validation_step(self, batch, batch_idx):
         
     | 
| 150 | 
         
            +
                    inputs = self.get_input(batch, self.image_key)
         
     | 
| 151 | 
         
            +
                    reconstructions, posterior = self(inputs)
         
     | 
| 152 | 
         
            +
                    aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
         
     | 
| 153 | 
         
            +
                                                    last_layer=self.get_last_layer(), split="val")
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
         
     | 
| 156 | 
         
            +
                                                        last_layer=self.get_last_layer(), split="val")
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                    self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
         
     | 
| 159 | 
         
            +
                    self.log_dict(log_dict_ae)
         
     | 
| 160 | 
         
            +
                    self.log_dict(log_dict_disc)
         
     | 
| 161 | 
         
            +
                    return self.log_dict
         
     | 
| 162 | 
         
            +
                
         
     | 
| 163 | 
         
            +
                def configure_optimizers(self):
         
     | 
| 164 | 
         
            +
                    lr = self.learning_rate
         
     | 
| 165 | 
         
            +
                    opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
         
     | 
| 166 | 
         
            +
                                              list(self.decoder.parameters())+
         
     | 
| 167 | 
         
            +
                                              list(self.quant_conv.parameters())+
         
     | 
| 168 | 
         
            +
                                              list(self.post_quant_conv.parameters()),
         
     | 
| 169 | 
         
            +
                                              lr=lr, betas=(0.5, 0.9))
         
     | 
| 170 | 
         
            +
                    opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
         
     | 
| 171 | 
         
            +
                                                lr=lr, betas=(0.5, 0.9))
         
     | 
| 172 | 
         
            +
                    return [opt_ae, opt_disc], []
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                def get_last_layer(self):
         
     | 
| 175 | 
         
            +
                    return self.decoder.conv_out.weight
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                @torch.no_grad()
         
     | 
| 178 | 
         
            +
                def log_images(self, batch, only_inputs=False, **kwargs):
         
     | 
| 179 | 
         
            +
                    log = dict()
         
     | 
| 180 | 
         
            +
                    x = self.get_input(batch, self.image_key)
         
     | 
| 181 | 
         
            +
                    x = x.to(self.device)
         
     | 
| 182 | 
         
            +
                    if not only_inputs:
         
     | 
| 183 | 
         
            +
                        xrec, posterior = self(x)
         
     | 
| 184 | 
         
            +
                        if x.shape[1] > 3:
         
     | 
| 185 | 
         
            +
                            # colorize with random projection
         
     | 
| 186 | 
         
            +
                            assert xrec.shape[1] > 3
         
     | 
| 187 | 
         
            +
                            x = self.to_rgb(x)
         
     | 
| 188 | 
         
            +
                            xrec = self.to_rgb(xrec)
         
     | 
| 189 | 
         
            +
                        log["samples"] = self.decode(torch.randn_like(posterior.sample()))
         
     | 
| 190 | 
         
            +
                        log["reconstructions"] = xrec
         
     | 
| 191 | 
         
            +
                    log["inputs"] = x
         
     | 
| 192 | 
         
            +
                    return log
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                def to_rgb(self, x):
         
     | 
| 195 | 
         
            +
                    assert self.image_key == "segmentation"
         
     | 
| 196 | 
         
            +
                    if not hasattr(self, "colorize"):
         
     | 
| 197 | 
         
            +
                        self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
         
     | 
| 198 | 
         
            +
                    x = F.conv2d(x, weight=self.colorize)
         
     | 
| 199 | 
         
            +
                    x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
         
     | 
| 200 | 
         
            +
                    return x
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
            class IdentityFirstStage(torch.nn.Module):
         
     | 
| 203 | 
         
            +
                def __init__(self, *args, vq_interface=False, **kwargs):
         
     | 
| 204 | 
         
            +
                    self.vq_interface = vq_interface  # TODO: Should be true by default but check to not break older stuff
         
     | 
| 205 | 
         
            +
                    super().__init__()
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                def encode(self, x, *args, **kwargs):
         
     | 
| 208 | 
         
            +
                    return x
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                def decode(self, x, *args, **kwargs):
         
     | 
| 211 | 
         
            +
                    return x
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                def quantize(self, x, *args, **kwargs):
         
     | 
| 214 | 
         
            +
                    if self.vq_interface:
         
     | 
| 215 | 
         
            +
                        return x, None, [None, None, None]
         
     | 
| 216 | 
         
            +
                    return x
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                def forward(self, x, *args, **kwargs):
         
     | 
| 219 | 
         
            +
                    return x
         
     | 
    	
        lvdm/models/ddpm3d.py
    ADDED
    
    | 
         @@ -0,0 +1,732 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            wild mixture of
         
     | 
| 3 | 
         
            +
            https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
         
     | 
| 4 | 
         
            +
            https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
         
     | 
| 5 | 
         
            +
            https://github.com/CompVis/taming-transformers
         
     | 
| 6 | 
         
            +
            -- merci
         
     | 
| 7 | 
         
            +
            """
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from functools import partial
         
     | 
| 10 | 
         
            +
            from contextlib import contextmanager
         
     | 
| 11 | 
         
            +
            import numpy as np
         
     | 
| 12 | 
         
            +
            from tqdm import tqdm
         
     | 
| 13 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 14 | 
         
            +
            import logging
         
     | 
| 15 | 
         
            +
            mainlogger = logging.getLogger('mainlogger')
         
     | 
| 16 | 
         
            +
            import torch
         
     | 
| 17 | 
         
            +
            import torch.nn as nn
         
     | 
| 18 | 
         
            +
            from torchvision.utils import make_grid
         
     | 
| 19 | 
         
            +
            import pytorch_lightning as pl
         
     | 
| 20 | 
         
            +
            from utils.utils import instantiate_from_config
         
     | 
| 21 | 
         
            +
            from lvdm.ema import LitEma
         
     | 
| 22 | 
         
            +
            from lvdm.distributions import DiagonalGaussianDistribution
         
     | 
| 23 | 
         
            +
            from lvdm.models.utils_diffusion import make_beta_schedule
         
     | 
| 24 | 
         
            +
            from lvdm.basics import disabled_train
         
     | 
| 25 | 
         
            +
            from lvdm.common import (
         
     | 
| 26 | 
         
            +
                extract_into_tensor,
         
     | 
| 27 | 
         
            +
                noise_like,
         
     | 
| 28 | 
         
            +
                exists,
         
     | 
| 29 | 
         
            +
                default
         
     | 
| 30 | 
         
            +
            )
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            __conditioning_keys__ = {'concat': 'c_concat',
         
     | 
| 33 | 
         
            +
                                     'crossattn': 'c_crossattn',
         
     | 
| 34 | 
         
            +
                                     'adm': 'y'}
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            class DDPM(pl.LightningModule):
         
     | 
| 37 | 
         
            +
                # classic DDPM with Gaussian diffusion, in image space
         
     | 
| 38 | 
         
            +
                def __init__(self,
         
     | 
| 39 | 
         
            +
                             unet_config,
         
     | 
| 40 | 
         
            +
                             timesteps=1000,
         
     | 
| 41 | 
         
            +
                             beta_schedule="linear",
         
     | 
| 42 | 
         
            +
                             loss_type="l2",
         
     | 
| 43 | 
         
            +
                             ckpt_path=None,
         
     | 
| 44 | 
         
            +
                             ignore_keys=[],
         
     | 
| 45 | 
         
            +
                             load_only_unet=False,
         
     | 
| 46 | 
         
            +
                             monitor=None,
         
     | 
| 47 | 
         
            +
                             use_ema=True,
         
     | 
| 48 | 
         
            +
                             first_stage_key="image",
         
     | 
| 49 | 
         
            +
                             image_size=256,
         
     | 
| 50 | 
         
            +
                             channels=3,
         
     | 
| 51 | 
         
            +
                             log_every_t=100,
         
     | 
| 52 | 
         
            +
                             clip_denoised=True,
         
     | 
| 53 | 
         
            +
                             linear_start=1e-4,
         
     | 
| 54 | 
         
            +
                             linear_end=2e-2,
         
     | 
| 55 | 
         
            +
                             cosine_s=8e-3,
         
     | 
| 56 | 
         
            +
                             given_betas=None,
         
     | 
| 57 | 
         
            +
                             original_elbo_weight=0.,
         
     | 
| 58 | 
         
            +
                             v_posterior=0.,  # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
         
     | 
| 59 | 
         
            +
                             l_simple_weight=1.,
         
     | 
| 60 | 
         
            +
                             conditioning_key=None,
         
     | 
| 61 | 
         
            +
                             parameterization="eps",  # all assuming fixed variance schedules
         
     | 
| 62 | 
         
            +
                             scheduler_config=None,
         
     | 
| 63 | 
         
            +
                             use_positional_encodings=False,
         
     | 
| 64 | 
         
            +
                             learn_logvar=False,
         
     | 
| 65 | 
         
            +
                             logvar_init=0.,
         
     | 
| 66 | 
         
            +
                             ):
         
     | 
| 67 | 
         
            +
                    super().__init__()
         
     | 
| 68 | 
         
            +
                    assert parameterization in ["eps", "x0", "v"], 'currently only supporting "eps" and "x0" and "v"'
         
     | 
| 69 | 
         
            +
                    self.parameterization = parameterization
         
     | 
| 70 | 
         
            +
                    mainlogger.info(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode")
         
     | 
| 71 | 
         
            +
                    self.cond_stage_model = None
         
     | 
| 72 | 
         
            +
                    self.clip_denoised = clip_denoised
         
     | 
| 73 | 
         
            +
                    self.log_every_t = log_every_t
         
     | 
| 74 | 
         
            +
                    self.first_stage_key = first_stage_key
         
     | 
| 75 | 
         
            +
                    self.channels = channels
         
     | 
| 76 | 
         
            +
                    self.temporal_length = unet_config.params.temporal_length
         
     | 
| 77 | 
         
            +
                    self.image_size = image_size  # try conv?
         
     | 
| 78 | 
         
            +
                    if isinstance(self.image_size, int):
         
     | 
| 79 | 
         
            +
                        self.image_size = [self.image_size, self.image_size]
         
     | 
| 80 | 
         
            +
                    self.use_positional_encodings = use_positional_encodings
         
     | 
| 81 | 
         
            +
                    self.model = DiffusionWrapper(unet_config, conditioning_key)
         
     | 
| 82 | 
         
            +
                    #count_params(self.model, verbose=True)
         
     | 
| 83 | 
         
            +
                    self.use_ema = use_ema
         
     | 
| 84 | 
         
            +
                    if self.use_ema:
         
     | 
| 85 | 
         
            +
                        self.model_ema = LitEma(self.model)
         
     | 
| 86 | 
         
            +
                        mainlogger.info(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                    self.use_scheduler = scheduler_config is not None
         
     | 
| 89 | 
         
            +
                    if self.use_scheduler:
         
     | 
| 90 | 
         
            +
                        self.scheduler_config = scheduler_config
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                    self.v_posterior = v_posterior
         
     | 
| 93 | 
         
            +
                    self.original_elbo_weight = original_elbo_weight
         
     | 
| 94 | 
         
            +
                    self.l_simple_weight = l_simple_weight
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    if monitor is not None:
         
     | 
| 97 | 
         
            +
                        self.monitor = monitor
         
     | 
| 98 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 99 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps,
         
     | 
| 102 | 
         
            +
                                           linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    self.loss_type = loss_type
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                    self.learn_logvar = learn_logvar
         
     | 
| 107 | 
         
            +
                    self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,))
         
     | 
| 108 | 
         
            +
                    if self.learn_logvar:
         
     | 
| 109 | 
         
            +
                        self.logvar = nn.Parameter(self.logvar, requires_grad=True)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
         
     | 
| 112 | 
         
            +
                                      linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 113 | 
         
            +
                    if exists(given_betas):
         
     | 
| 114 | 
         
            +
                        betas = given_betas
         
     | 
| 115 | 
         
            +
                    else:
         
     | 
| 116 | 
         
            +
                        betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
         
     | 
| 117 | 
         
            +
                                                   cosine_s=cosine_s)
         
     | 
| 118 | 
         
            +
                    alphas = 1. - betas
         
     | 
| 119 | 
         
            +
                    alphas_cumprod = np.cumprod(alphas, axis=0)
         
     | 
| 120 | 
         
            +
                    alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    timesteps, = betas.shape
         
     | 
| 123 | 
         
            +
                    self.num_timesteps = int(timesteps)
         
     | 
| 124 | 
         
            +
                    self.linear_start = linear_start
         
     | 
| 125 | 
         
            +
                    self.linear_end = linear_end
         
     | 
| 126 | 
         
            +
                    assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    to_torch = partial(torch.tensor, dtype=torch.float32)
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                    self.register_buffer('betas', to_torch(betas))
         
     | 
| 131 | 
         
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 132 | 
         
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 135 | 
         
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 136 | 
         
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         
     | 
| 137 | 
         
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
         
     | 
| 138 | 
         
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
         
     | 
| 139 | 
         
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
                    # calculations for posterior q(x_{t-1} | x_t, x_0)
         
     | 
| 142 | 
         
            +
                    posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / (
         
     | 
| 143 | 
         
            +
                                1. - alphas_cumprod) + self.v_posterior * betas
         
     | 
| 144 | 
         
            +
                    # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
         
     | 
| 145 | 
         
            +
                    self.register_buffer('posterior_variance', to_torch(posterior_variance))
         
     | 
| 146 | 
         
            +
                    # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
         
     | 
| 147 | 
         
            +
                    self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
         
     | 
| 148 | 
         
            +
                    self.register_buffer('posterior_mean_coef1', to_torch(
         
     | 
| 149 | 
         
            +
                        betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
         
     | 
| 150 | 
         
            +
                    self.register_buffer('posterior_mean_coef2', to_torch(
         
     | 
| 151 | 
         
            +
                        (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 154 | 
         
            +
                        lvlb_weights = self.betas ** 2 / (
         
     | 
| 155 | 
         
            +
                                    2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod))
         
     | 
| 156 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 157 | 
         
            +
                        lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod))
         
     | 
| 158 | 
         
            +
                    elif self.parameterization == "v":
         
     | 
| 159 | 
         
            +
                        lvlb_weights = torch.ones_like(self.betas ** 2 / (
         
     | 
| 160 | 
         
            +
                                2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)))
         
     | 
| 161 | 
         
            +
                    else:
         
     | 
| 162 | 
         
            +
                        raise NotImplementedError("mu not supported")
         
     | 
| 163 | 
         
            +
                    # TODO how to choose this term
         
     | 
| 164 | 
         
            +
                    lvlb_weights[0] = lvlb_weights[1]
         
     | 
| 165 | 
         
            +
                    self.register_buffer('lvlb_weights', lvlb_weights, persistent=False)
         
     | 
| 166 | 
         
            +
                    assert not torch.isnan(self.lvlb_weights).all()
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                @contextmanager
         
     | 
| 169 | 
         
            +
                def ema_scope(self, context=None):
         
     | 
| 170 | 
         
            +
                    if self.use_ema:
         
     | 
| 171 | 
         
            +
                        self.model_ema.store(self.model.parameters())
         
     | 
| 172 | 
         
            +
                        self.model_ema.copy_to(self.model)
         
     | 
| 173 | 
         
            +
                        if context is not None:
         
     | 
| 174 | 
         
            +
                            mainlogger.info(f"{context}: Switched to EMA weights")
         
     | 
| 175 | 
         
            +
                    try:
         
     | 
| 176 | 
         
            +
                        yield None
         
     | 
| 177 | 
         
            +
                    finally:
         
     | 
| 178 | 
         
            +
                        if self.use_ema:
         
     | 
| 179 | 
         
            +
                            self.model_ema.restore(self.model.parameters())
         
     | 
| 180 | 
         
            +
                            if context is not None:
         
     | 
| 181 | 
         
            +
                                mainlogger.info(f"{context}: Restored training weights")
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
         
     | 
| 184 | 
         
            +
                    sd = torch.load(path, map_location="cpu")
         
     | 
| 185 | 
         
            +
                    if "state_dict" in list(sd.keys()):
         
     | 
| 186 | 
         
            +
                        sd = sd["state_dict"]
         
     | 
| 187 | 
         
            +
                    keys = list(sd.keys())
         
     | 
| 188 | 
         
            +
                    for k in keys:
         
     | 
| 189 | 
         
            +
                        for ik in ignore_keys:
         
     | 
| 190 | 
         
            +
                            if k.startswith(ik):
         
     | 
| 191 | 
         
            +
                                mainlogger.info("Deleting key {} from state_dict.".format(k))
         
     | 
| 192 | 
         
            +
                                del sd[k]
         
     | 
| 193 | 
         
            +
                    missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
         
     | 
| 194 | 
         
            +
                        sd, strict=False)
         
     | 
| 195 | 
         
            +
                    mainlogger.info(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
         
     | 
| 196 | 
         
            +
                    if len(missing) > 0:
         
     | 
| 197 | 
         
            +
                        mainlogger.info(f"Missing Keys: {missing}")
         
     | 
| 198 | 
         
            +
                    if len(unexpected) > 0:
         
     | 
| 199 | 
         
            +
                        mainlogger.info(f"Unexpected Keys: {unexpected}")
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                def q_mean_variance(self, x_start, t):
         
     | 
| 202 | 
         
            +
                    """
         
     | 
| 203 | 
         
            +
                    Get the distribution q(x_t | x_0).
         
     | 
| 204 | 
         
            +
                    :param x_start: the [N x C x ...] tensor of noiseless inputs.
         
     | 
| 205 | 
         
            +
                    :param t: the number of diffusion steps (minus 1). Here, 0 means one step.
         
     | 
| 206 | 
         
            +
                    :return: A tuple (mean, variance, log_variance), all of x_start's shape.
         
     | 
| 207 | 
         
            +
                    """
         
     | 
| 208 | 
         
            +
                    mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start)
         
     | 
| 209 | 
         
            +
                    variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape)
         
     | 
| 210 | 
         
            +
                    log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape)
         
     | 
| 211 | 
         
            +
                    return mean, variance, log_variance
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                def predict_start_from_noise(self, x_t, t, noise):
         
     | 
| 214 | 
         
            +
                    return (
         
     | 
| 215 | 
         
            +
                            extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
         
     | 
| 216 | 
         
            +
                            extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
         
     | 
| 217 | 
         
            +
                    )
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                def predict_start_from_z_and_v(self, x_t, t, v):
         
     | 
| 220 | 
         
            +
                    # self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
         
     | 
| 221 | 
         
            +
                    # self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
         
     | 
| 222 | 
         
            +
                    return (
         
     | 
| 223 | 
         
            +
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * x_t -
         
     | 
| 224 | 
         
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * v
         
     | 
| 225 | 
         
            +
                    )
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                def predict_eps_from_z_and_v(self, x_t, t, v):
         
     | 
| 228 | 
         
            +
                    return (
         
     | 
| 229 | 
         
            +
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x_t.shape) * v +
         
     | 
| 230 | 
         
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_t.shape) * x_t
         
     | 
| 231 | 
         
            +
                    )
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                def q_posterior(self, x_start, x_t, t):
         
     | 
| 234 | 
         
            +
                    posterior_mean = (
         
     | 
| 235 | 
         
            +
                            extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start +
         
     | 
| 236 | 
         
            +
                            extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t
         
     | 
| 237 | 
         
            +
                    )
         
     | 
| 238 | 
         
            +
                    posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape)
         
     | 
| 239 | 
         
            +
                    posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape)
         
     | 
| 240 | 
         
            +
                    return posterior_mean, posterior_variance, posterior_log_variance_clipped
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                def p_mean_variance(self, x, t, clip_denoised: bool):
         
     | 
| 243 | 
         
            +
                    model_out = self.model(x, t)
         
     | 
| 244 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 245 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 246 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 247 | 
         
            +
                        x_recon = model_out
         
     | 
| 248 | 
         
            +
                    if clip_denoised:
         
     | 
| 249 | 
         
            +
                        x_recon.clamp_(-1., 1.)
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 252 | 
         
            +
                    return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                @torch.no_grad()
         
     | 
| 255 | 
         
            +
                def p_sample(self, x, t, clip_denoised=True, repeat_noise=False):
         
     | 
| 256 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 257 | 
         
            +
                    model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised)
         
     | 
| 258 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise)
         
     | 
| 259 | 
         
            +
                    # no noise when t == 0
         
     | 
| 260 | 
         
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 261 | 
         
            +
                    return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                @torch.no_grad()
         
     | 
| 264 | 
         
            +
                def p_sample_loop(self, shape, return_intermediates=False):
         
     | 
| 265 | 
         
            +
                    device = self.betas.device
         
     | 
| 266 | 
         
            +
                    b = shape[0]
         
     | 
| 267 | 
         
            +
                    img = torch.randn(shape, device=device)
         
     | 
| 268 | 
         
            +
                    intermediates = [img]
         
     | 
| 269 | 
         
            +
                    for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps):
         
     | 
| 270 | 
         
            +
                        img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long),
         
     | 
| 271 | 
         
            +
                                            clip_denoised=self.clip_denoised)
         
     | 
| 272 | 
         
            +
                        if i % self.log_every_t == 0 or i == self.num_timesteps - 1:
         
     | 
| 273 | 
         
            +
                            intermediates.append(img)
         
     | 
| 274 | 
         
            +
                    if return_intermediates:
         
     | 
| 275 | 
         
            +
                        return img, intermediates
         
     | 
| 276 | 
         
            +
                    return img
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                @torch.no_grad()
         
     | 
| 279 | 
         
            +
                def sample(self, batch_size=16, return_intermediates=False):
         
     | 
| 280 | 
         
            +
                    image_size = self.image_size
         
     | 
| 281 | 
         
            +
                    channels = self.channels
         
     | 
| 282 | 
         
            +
                    return self.p_sample_loop((batch_size, channels, image_size, image_size),
         
     | 
| 283 | 
         
            +
                                              return_intermediates=return_intermediates)
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                def q_sample(self, x_start, t, noise=None):
         
     | 
| 286 | 
         
            +
                    noise = default(noise, lambda: torch.randn_like(x_start))
         
     | 
| 287 | 
         
            +
                    return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
         
     | 
| 288 | 
         
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                def get_v(self, x, noise, t):
         
     | 
| 291 | 
         
            +
                    return (
         
     | 
| 292 | 
         
            +
                            extract_into_tensor(self.sqrt_alphas_cumprod, t, x.shape) * noise -
         
     | 
| 293 | 
         
            +
                            extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x.shape) * x
         
     | 
| 294 | 
         
            +
                    )
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                def get_input(self, batch, k):
         
     | 
| 297 | 
         
            +
                    x = batch[k]
         
     | 
| 298 | 
         
            +
                    x = x.to(memory_format=torch.contiguous_format).float()
         
     | 
| 299 | 
         
            +
                    return x
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                def _get_rows_from_list(self, samples):
         
     | 
| 302 | 
         
            +
                    n_imgs_per_row = len(samples)
         
     | 
| 303 | 
         
            +
                    denoise_grid = rearrange(samples, 'n b c h w -> b n c h w')
         
     | 
| 304 | 
         
            +
                    denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 305 | 
         
            +
                    denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row)
         
     | 
| 306 | 
         
            +
                    return denoise_grid
         
     | 
| 307 | 
         
            +
             
     | 
| 308 | 
         
            +
                @torch.no_grad()
         
     | 
| 309 | 
         
            +
                def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs):
         
     | 
| 310 | 
         
            +
                    log = dict()
         
     | 
| 311 | 
         
            +
                    x = self.get_input(batch, self.first_stage_key)
         
     | 
| 312 | 
         
            +
                    N = min(x.shape[0], N)
         
     | 
| 313 | 
         
            +
                    n_row = min(x.shape[0], n_row)
         
     | 
| 314 | 
         
            +
                    x = x.to(self.device)[:N]
         
     | 
| 315 | 
         
            +
                    log["inputs"] = x
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    # get diffusion row
         
     | 
| 318 | 
         
            +
                    diffusion_row = list()
         
     | 
| 319 | 
         
            +
                    x_start = x[:n_row]
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    for t in range(self.num_timesteps):
         
     | 
| 322 | 
         
            +
                        if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
         
     | 
| 323 | 
         
            +
                            t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
         
     | 
| 324 | 
         
            +
                            t = t.to(self.device).long()
         
     | 
| 325 | 
         
            +
                            noise = torch.randn_like(x_start)
         
     | 
| 326 | 
         
            +
                            x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
         
     | 
| 327 | 
         
            +
                            diffusion_row.append(x_noisy)
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                    log["diffusion_row"] = self._get_rows_from_list(diffusion_row)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    if sample:
         
     | 
| 332 | 
         
            +
                        # get denoise row
         
     | 
| 333 | 
         
            +
                        with self.ema_scope("Plotting"):
         
     | 
| 334 | 
         
            +
                            samples, denoise_row = self.sample(batch_size=N, return_intermediates=True)
         
     | 
| 335 | 
         
            +
             
     | 
| 336 | 
         
            +
                        log["samples"] = samples
         
     | 
| 337 | 
         
            +
                        log["denoise_row"] = self._get_rows_from_list(denoise_row)
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                    if return_keys:
         
     | 
| 340 | 
         
            +
                        if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0:
         
     | 
| 341 | 
         
            +
                            return log
         
     | 
| 342 | 
         
            +
                        else:
         
     | 
| 343 | 
         
            +
                            return {key: log[key] for key in return_keys}
         
     | 
| 344 | 
         
            +
                    return log
         
     | 
| 345 | 
         
            +
             
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
            class LatentDiffusion(DDPM):
         
     | 
| 348 | 
         
            +
                """main class"""
         
     | 
| 349 | 
         
            +
                def __init__(self,
         
     | 
| 350 | 
         
            +
                             first_stage_config,
         
     | 
| 351 | 
         
            +
                             cond_stage_config,
         
     | 
| 352 | 
         
            +
                             num_timesteps_cond=None,
         
     | 
| 353 | 
         
            +
                             cond_stage_key="caption",
         
     | 
| 354 | 
         
            +
                             cond_stage_trainable=False,
         
     | 
| 355 | 
         
            +
                             cond_stage_forward=None,
         
     | 
| 356 | 
         
            +
                             conditioning_key=None,
         
     | 
| 357 | 
         
            +
                             uncond_prob=0.2,
         
     | 
| 358 | 
         
            +
                             uncond_type="empty_seq",
         
     | 
| 359 | 
         
            +
                             scale_factor=1.0,
         
     | 
| 360 | 
         
            +
                             scale_by_std=False,
         
     | 
| 361 | 
         
            +
                             encoder_type="2d",
         
     | 
| 362 | 
         
            +
                             only_model=False,
         
     | 
| 363 | 
         
            +
                             noise_strength=0,
         
     | 
| 364 | 
         
            +
                             use_dynamic_rescale=False,
         
     | 
| 365 | 
         
            +
                             base_scale=0.7,
         
     | 
| 366 | 
         
            +
                             turning_step=400,
         
     | 
| 367 | 
         
            +
                             loop_video=False,
         
     | 
| 368 | 
         
            +
                             *args, **kwargs):
         
     | 
| 369 | 
         
            +
                    self.num_timesteps_cond = default(num_timesteps_cond, 1)
         
     | 
| 370 | 
         
            +
                    self.scale_by_std = scale_by_std
         
     | 
| 371 | 
         
            +
                    assert self.num_timesteps_cond <= kwargs['timesteps']
         
     | 
| 372 | 
         
            +
                    # for backwards compatibility after implementation of DiffusionWrapper
         
     | 
| 373 | 
         
            +
                    ckpt_path = kwargs.pop("ckpt_path", None)
         
     | 
| 374 | 
         
            +
                    ignore_keys = kwargs.pop("ignore_keys", [])
         
     | 
| 375 | 
         
            +
                    conditioning_key = default(conditioning_key, 'crossattn')
         
     | 
| 376 | 
         
            +
                    super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    self.cond_stage_trainable = cond_stage_trainable
         
     | 
| 379 | 
         
            +
                    self.cond_stage_key = cond_stage_key
         
     | 
| 380 | 
         
            +
                    self.noise_strength = noise_strength
         
     | 
| 381 | 
         
            +
                    self.use_dynamic_rescale = use_dynamic_rescale
         
     | 
| 382 | 
         
            +
                    self.loop_video = loop_video
         
     | 
| 383 | 
         
            +
                    try:
         
     | 
| 384 | 
         
            +
                        self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
         
     | 
| 385 | 
         
            +
                    except:
         
     | 
| 386 | 
         
            +
                        self.num_downs = 0
         
     | 
| 387 | 
         
            +
                    if not scale_by_std:
         
     | 
| 388 | 
         
            +
                        self.scale_factor = scale_factor
         
     | 
| 389 | 
         
            +
                    else:
         
     | 
| 390 | 
         
            +
                        self.register_buffer('scale_factor', torch.tensor(scale_factor))
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                    if use_dynamic_rescale:
         
     | 
| 393 | 
         
            +
                        scale_arr1 = np.linspace(1.0, base_scale, turning_step)
         
     | 
| 394 | 
         
            +
                        scale_arr2 = np.full(self.num_timesteps, base_scale)
         
     | 
| 395 | 
         
            +
                        scale_arr = np.concatenate((scale_arr1, scale_arr2))
         
     | 
| 396 | 
         
            +
                        to_torch = partial(torch.tensor, dtype=torch.float32)
         
     | 
| 397 | 
         
            +
                        self.register_buffer('scale_arr', to_torch(scale_arr))
         
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
                    self.instantiate_first_stage(first_stage_config)
         
     | 
| 400 | 
         
            +
                    self.instantiate_cond_stage(cond_stage_config)
         
     | 
| 401 | 
         
            +
                    self.first_stage_config = first_stage_config
         
     | 
| 402 | 
         
            +
                    self.cond_stage_config = cond_stage_config        
         
     | 
| 403 | 
         
            +
                    self.clip_denoised = False
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    self.cond_stage_forward = cond_stage_forward
         
     | 
| 406 | 
         
            +
                    self.encoder_type = encoder_type
         
     | 
| 407 | 
         
            +
                    assert(encoder_type in ["2d", "3d"])
         
     | 
| 408 | 
         
            +
                    self.uncond_prob = uncond_prob
         
     | 
| 409 | 
         
            +
                    self.classifier_free_guidance = True if uncond_prob > 0 else False
         
     | 
| 410 | 
         
            +
                    assert(uncond_type in ["zero_embed", "empty_seq"])
         
     | 
| 411 | 
         
            +
                    self.uncond_type = uncond_type
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                    self.restarted_from_ckpt = False
         
     | 
| 414 | 
         
            +
                    if ckpt_path is not None:
         
     | 
| 415 | 
         
            +
                        self.init_from_ckpt(ckpt_path, ignore_keys, only_model=only_model)
         
     | 
| 416 | 
         
            +
                        self.restarted_from_ckpt = True
         
     | 
| 417 | 
         
            +
                            
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                def make_cond_schedule(self, ):
         
     | 
| 420 | 
         
            +
                    self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long)
         
     | 
| 421 | 
         
            +
                    ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long()
         
     | 
| 422 | 
         
            +
                    self.cond_ids[:self.num_timesteps_cond] = ids
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                def instantiate_first_stage(self, config):
         
     | 
| 425 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 426 | 
         
            +
                    self.first_stage_model = model.eval()
         
     | 
| 427 | 
         
            +
                    self.first_stage_model.train = disabled_train
         
     | 
| 428 | 
         
            +
                    for param in self.first_stage_model.parameters():
         
     | 
| 429 | 
         
            +
                        param.requires_grad = False
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                def instantiate_cond_stage(self, config):
         
     | 
| 432 | 
         
            +
                    if not self.cond_stage_trainable:
         
     | 
| 433 | 
         
            +
                        model = instantiate_from_config(config)
         
     | 
| 434 | 
         
            +
                        self.cond_stage_model = model.eval()
         
     | 
| 435 | 
         
            +
                        self.cond_stage_model.train = disabled_train
         
     | 
| 436 | 
         
            +
                        for param in self.cond_stage_model.parameters():
         
     | 
| 437 | 
         
            +
                            param.requires_grad = False
         
     | 
| 438 | 
         
            +
                    else:
         
     | 
| 439 | 
         
            +
                        model = instantiate_from_config(config)
         
     | 
| 440 | 
         
            +
                        self.cond_stage_model = model
         
     | 
| 441 | 
         
            +
                
         
     | 
| 442 | 
         
            +
                def get_learned_conditioning(self, c):
         
     | 
| 443 | 
         
            +
                    if self.cond_stage_forward is None:
         
     | 
| 444 | 
         
            +
                        if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode):
         
     | 
| 445 | 
         
            +
                            c = self.cond_stage_model.encode(c)
         
     | 
| 446 | 
         
            +
                            if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 447 | 
         
            +
                                c = c.mode()
         
     | 
| 448 | 
         
            +
                        else:
         
     | 
| 449 | 
         
            +
                            c = self.cond_stage_model(c)
         
     | 
| 450 | 
         
            +
                    else:
         
     | 
| 451 | 
         
            +
                        assert hasattr(self.cond_stage_model, self.cond_stage_forward)
         
     | 
| 452 | 
         
            +
                        c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
         
     | 
| 453 | 
         
            +
                    return c
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                def get_first_stage_encoding(self, encoder_posterior, noise=None):
         
     | 
| 456 | 
         
            +
                    if isinstance(encoder_posterior, DiagonalGaussianDistribution):
         
     | 
| 457 | 
         
            +
                        z = encoder_posterior.sample(noise=noise)
         
     | 
| 458 | 
         
            +
                    elif isinstance(encoder_posterior, torch.Tensor):
         
     | 
| 459 | 
         
            +
                        z = encoder_posterior
         
     | 
| 460 | 
         
            +
                    else:
         
     | 
| 461 | 
         
            +
                        raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented")
         
     | 
| 462 | 
         
            +
                    return self.scale_factor * z
         
     | 
| 463 | 
         
            +
               
         
     | 
| 464 | 
         
            +
                @torch.no_grad()
         
     | 
| 465 | 
         
            +
                def encode_first_stage(self, x):
         
     | 
| 466 | 
         
            +
                    if self.encoder_type == "2d" and x.dim() == 5:
         
     | 
| 467 | 
         
            +
                        b, _, t, _, _ = x.shape
         
     | 
| 468 | 
         
            +
                        x = rearrange(x, 'b c t h w -> (b t) c h w')
         
     | 
| 469 | 
         
            +
                        reshape_back = True
         
     | 
| 470 | 
         
            +
                    else:
         
     | 
| 471 | 
         
            +
                        reshape_back = False
         
     | 
| 472 | 
         
            +
                    
         
     | 
| 473 | 
         
            +
                    encoder_posterior = self.first_stage_model.encode(x)
         
     | 
| 474 | 
         
            +
                    results = self.get_first_stage_encoding(encoder_posterior).detach()
         
     | 
| 475 | 
         
            +
                    
         
     | 
| 476 | 
         
            +
                    if reshape_back:
         
     | 
| 477 | 
         
            +
                        results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
         
     | 
| 478 | 
         
            +
                    
         
     | 
| 479 | 
         
            +
                    return results
         
     | 
| 480 | 
         
            +
                
         
     | 
| 481 | 
         
            +
                def decode_core(self, z, **kwargs):
         
     | 
| 482 | 
         
            +
                    if self.encoder_type == "2d" and z.dim() == 5:
         
     | 
| 483 | 
         
            +
                        b, _, t, _, _ = z.shape
         
     | 
| 484 | 
         
            +
                        z = rearrange(z, 'b c t h w -> (b t) c h w')
         
     | 
| 485 | 
         
            +
                        reshape_back = True
         
     | 
| 486 | 
         
            +
                    else:
         
     | 
| 487 | 
         
            +
                        reshape_back = False
         
     | 
| 488 | 
         
            +
                        
         
     | 
| 489 | 
         
            +
                    z = 1. / self.scale_factor * z
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                    results = self.first_stage_model.decode(z, **kwargs)
         
     | 
| 492 | 
         
            +
                        
         
     | 
| 493 | 
         
            +
                    if reshape_back:
         
     | 
| 494 | 
         
            +
                        results = rearrange(results, '(b t) c h w -> b c t h w', b=b,t=t)
         
     | 
| 495 | 
         
            +
                    return results
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                @torch.no_grad()
         
     | 
| 498 | 
         
            +
                def decode_first_stage(self, z, **kwargs):
         
     | 
| 499 | 
         
            +
                    return self.decode_core(z, **kwargs)
         
     | 
| 500 | 
         
            +
             
     | 
| 501 | 
         
            +
                # same as above but without decorator
         
     | 
| 502 | 
         
            +
                def differentiable_decode_first_stage(self, z, **kwargs):
         
     | 
| 503 | 
         
            +
                    return self.decode_core(z, **kwargs)
         
     | 
| 504 | 
         
            +
                
         
     | 
| 505 | 
         
            +
                def forward(self, x, c, **kwargs):
         
     | 
| 506 | 
         
            +
                    t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long()
         
     | 
| 507 | 
         
            +
                    if self.use_dynamic_rescale:
         
     | 
| 508 | 
         
            +
                        x = x * extract_into_tensor(self.scale_arr, t, x.shape)
         
     | 
| 509 | 
         
            +
                    return self.p_losses(x, c, t, **kwargs)
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                def apply_model(self, x_noisy, t, cond, **kwargs):
         
     | 
| 512 | 
         
            +
                    if isinstance(cond, dict):
         
     | 
| 513 | 
         
            +
                        # hybrid case, cond is exptected to be a dict
         
     | 
| 514 | 
         
            +
                        pass
         
     | 
| 515 | 
         
            +
                    else:
         
     | 
| 516 | 
         
            +
                        if not isinstance(cond, list):
         
     | 
| 517 | 
         
            +
                            cond = [cond]
         
     | 
| 518 | 
         
            +
                        key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
         
     | 
| 519 | 
         
            +
                        cond = {key: cond}
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                    x_recon = self.model(x_noisy, t, **cond, **kwargs)
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                    if isinstance(x_recon, tuple):
         
     | 
| 524 | 
         
            +
                        return x_recon[0]
         
     | 
| 525 | 
         
            +
                    else:
         
     | 
| 526 | 
         
            +
                        return x_recon
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                def _get_denoise_row_from_list(self, samples, desc=''):
         
     | 
| 529 | 
         
            +
                    denoise_row = []
         
     | 
| 530 | 
         
            +
                    for zd in tqdm(samples, desc=desc):
         
     | 
| 531 | 
         
            +
                        denoise_row.append(self.decode_first_stage(zd.to(self.device)))
         
     | 
| 532 | 
         
            +
                    n_log_timesteps = len(denoise_row)
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                    denoise_row = torch.stack(denoise_row)  # n_log_timesteps, b, C, H, W
         
     | 
| 535 | 
         
            +
                    
         
     | 
| 536 | 
         
            +
                    if denoise_row.dim() == 5:
         
     | 
| 537 | 
         
            +
                        denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w')
         
     | 
| 538 | 
         
            +
                        denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w')
         
     | 
| 539 | 
         
            +
                        denoise_grid = make_grid(denoise_grid, nrow=n_log_timesteps)
         
     | 
| 540 | 
         
            +
                    elif denoise_row.dim() == 6:
         
     | 
| 541 | 
         
            +
                        # video, grid_size=[n_log_timesteps*bs, t]
         
     | 
| 542 | 
         
            +
                        video_length = denoise_row.shape[3]
         
     | 
| 543 | 
         
            +
                        denoise_grid = rearrange(denoise_row, 'n b c t h w -> b n c t h w')
         
     | 
| 544 | 
         
            +
                        denoise_grid = rearrange(denoise_grid, 'b n c t h w -> (b n) c t h w')
         
     | 
| 545 | 
         
            +
                        denoise_grid = rearrange(denoise_grid, 'n c t h w -> (n t) c h w')
         
     | 
| 546 | 
         
            +
                        denoise_grid = make_grid(denoise_grid, nrow=video_length)
         
     | 
| 547 | 
         
            +
                    else:
         
     | 
| 548 | 
         
            +
                        raise ValueError
         
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
                    return denoise_grid
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
             
     | 
| 553 | 
         
            +
                def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False, score_corrector=None, corrector_kwargs=None, **kwargs):
         
     | 
| 554 | 
         
            +
                    t_in = t
         
     | 
| 555 | 
         
            +
                    model_out = self.apply_model(x, t_in, c, **kwargs)
         
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 558 | 
         
            +
                        assert self.parameterization == "eps"
         
     | 
| 559 | 
         
            +
                        model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs)
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                    if self.parameterization == "eps":
         
     | 
| 562 | 
         
            +
                        x_recon = self.predict_start_from_noise(x, t=t, noise=model_out)
         
     | 
| 563 | 
         
            +
                    elif self.parameterization == "x0":
         
     | 
| 564 | 
         
            +
                        x_recon = model_out
         
     | 
| 565 | 
         
            +
                    else:
         
     | 
| 566 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
                    if clip_denoised:
         
     | 
| 569 | 
         
            +
                        x_recon.clamp_(-1., 1.)
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
                    model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
                    if return_x0:
         
     | 
| 574 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance, x_recon
         
     | 
| 575 | 
         
            +
                    else:
         
     | 
| 576 | 
         
            +
                        return model_mean, posterior_variance, posterior_log_variance
         
     | 
| 577 | 
         
            +
             
     | 
| 578 | 
         
            +
                @torch.no_grad()
         
     | 
| 579 | 
         
            +
                def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, return_x0=False, \
         
     | 
| 580 | 
         
            +
                             temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, **kwargs):
         
     | 
| 581 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 582 | 
         
            +
                    outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, return_x0=return_x0, \
         
     | 
| 583 | 
         
            +
                                                   score_corrector=score_corrector, corrector_kwargs=corrector_kwargs, **kwargs)
         
     | 
| 584 | 
         
            +
                    if return_x0:
         
     | 
| 585 | 
         
            +
                        model_mean, _, model_log_variance, x0 = outputs
         
     | 
| 586 | 
         
            +
                    else:
         
     | 
| 587 | 
         
            +
                        model_mean, _, model_log_variance = outputs
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                    noise = noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 590 | 
         
            +
                    if noise_dropout > 0.:
         
     | 
| 591 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 592 | 
         
            +
                    # no noise when t == 0
         
     | 
| 593 | 
         
            +
                    nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
                    if return_x0:
         
     | 
| 596 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0
         
     | 
| 597 | 
         
            +
                    else:
         
     | 
| 598 | 
         
            +
                        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
                @torch.no_grad()
         
     | 
| 601 | 
         
            +
                def p_sample_loop(self, cond, shape, return_intermediates=False, x_T=None, verbose=True, callback=None, \
         
     | 
| 602 | 
         
            +
                                  timesteps=None, mask=None, x0=None, img_callback=None, start_T=None, log_every_t=None, **kwargs):
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
                    if not log_every_t:
         
     | 
| 605 | 
         
            +
                        log_every_t = self.log_every_t
         
     | 
| 606 | 
         
            +
                    device = self.betas.device
         
     | 
| 607 | 
         
            +
                    b = shape[0]        
         
     | 
| 608 | 
         
            +
                    # sample an initial noise
         
     | 
| 609 | 
         
            +
                    if x_T is None:
         
     | 
| 610 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 611 | 
         
            +
                    else:
         
     | 
| 612 | 
         
            +
                        img = x_T
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                    intermediates = [img]
         
     | 
| 615 | 
         
            +
                    if timesteps is None:
         
     | 
| 616 | 
         
            +
                        timesteps = self.num_timesteps
         
     | 
| 617 | 
         
            +
                    if start_T is not None:
         
     | 
| 618 | 
         
            +
                        timesteps = min(timesteps, start_T)
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                    iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(range(0, timesteps))
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                    if mask is not None:
         
     | 
| 623 | 
         
            +
                        assert x0 is not None
         
     | 
| 624 | 
         
            +
                        assert x0.shape[2:3] == mask.shape[2:3]  # spatial size has to match
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                    for i in iterator:
         
     | 
| 627 | 
         
            +
                        ts = torch.full((b,), i, device=device, dtype=torch.long)
         
     | 
| 628 | 
         
            +
                        if self.shorten_cond_schedule:
         
     | 
| 629 | 
         
            +
                            assert self.model.conditioning_key != 'hybrid'
         
     | 
| 630 | 
         
            +
                            tc = self.cond_ids[ts].to(cond.device)
         
     | 
| 631 | 
         
            +
                            cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond))
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                        img = self.p_sample(img, cond, ts, clip_denoised=self.clip_denoised, **kwargs)
         
     | 
| 634 | 
         
            +
                        if mask is not None:
         
     | 
| 635 | 
         
            +
                            img_orig = self.q_sample(x0, ts)
         
     | 
| 636 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img
         
     | 
| 637 | 
         
            +
             
     | 
| 638 | 
         
            +
                        if i % log_every_t == 0 or i == timesteps - 1:
         
     | 
| 639 | 
         
            +
                            intermediates.append(img)
         
     | 
| 640 | 
         
            +
                        if callback: callback(i)
         
     | 
| 641 | 
         
            +
                        if img_callback: img_callback(img, i)
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
                    if return_intermediates:
         
     | 
| 644 | 
         
            +
                        return img, intermediates
         
     | 
| 645 | 
         
            +
                    return img
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
             
     | 
| 648 | 
         
            +
            class LatentVisualDiffusion(LatentDiffusion):
         
     | 
| 649 | 
         
            +
                def __init__(self, img_cond_stage_config, image_proj_stage_config, freeze_embedder=True, *args, **kwargs):
         
     | 
| 650 | 
         
            +
                    super().__init__(*args, **kwargs)
         
     | 
| 651 | 
         
            +
                    self._init_embedder(img_cond_stage_config, freeze_embedder)
         
     | 
| 652 | 
         
            +
                    self.image_proj_model = instantiate_from_config(image_proj_stage_config)
         
     | 
| 653 | 
         
            +
             
     | 
| 654 | 
         
            +
                def _init_embedder(self, config, freeze=True):
         
     | 
| 655 | 
         
            +
                    embedder = instantiate_from_config(config)
         
     | 
| 656 | 
         
            +
                    if freeze:
         
     | 
| 657 | 
         
            +
                        self.embedder = embedder.eval()
         
     | 
| 658 | 
         
            +
                        self.embedder.train = disabled_train
         
     | 
| 659 | 
         
            +
                        for param in self.embedder.parameters():
         
     | 
| 660 | 
         
            +
                            param.requires_grad = False
         
     | 
| 661 | 
         
            +
             
     | 
| 662 | 
         
            +
             
     | 
| 663 | 
         
            +
            class DiffusionWrapper(pl.LightningModule):
         
     | 
| 664 | 
         
            +
                def __init__(self, diff_model_config, conditioning_key):
         
     | 
| 665 | 
         
            +
                    super().__init__()
         
     | 
| 666 | 
         
            +
                    self.diffusion_model = instantiate_from_config(diff_model_config)
         
     | 
| 667 | 
         
            +
                    self.conditioning_key = conditioning_key
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
                def forward(self, x, t, c_concat: list = None, c_crossattn: list = None,
         
     | 
| 670 | 
         
            +
                            c_adm=None, s=None, mask=None, **kwargs):
         
     | 
| 671 | 
         
            +
                    # temporal_context = fps is foNone
         
     | 
| 672 | 
         
            +
                    if self.conditioning_key is None:
         
     | 
| 673 | 
         
            +
                        out = self.diffusion_model(x, t)
         
     | 
| 674 | 
         
            +
                    elif self.conditioning_key == 'concat':
         
     | 
| 675 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 676 | 
         
            +
                        out = self.diffusion_model(xc, t, **kwargs)
         
     | 
| 677 | 
         
            +
                    elif self.conditioning_key == 'crossattn':
         
     | 
| 678 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 679 | 
         
            +
                        out = self.diffusion_model(x, t, context=cc, **kwargs)
         
     | 
| 680 | 
         
            +
                    elif self.conditioning_key == 'hybrid':
         
     | 
| 681 | 
         
            +
                        ## it is just right [b,c,t,h,w]: concatenate in channel dim
         
     | 
| 682 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 683 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 684 | 
         
            +
                        out = self.diffusion_model(xc, t, context=cc, **kwargs)
         
     | 
| 685 | 
         
            +
                    elif self.conditioning_key == 'resblockcond':
         
     | 
| 686 | 
         
            +
                        cc = c_crossattn[0]
         
     | 
| 687 | 
         
            +
                        out = self.diffusion_model(x, t, context=cc)
         
     | 
| 688 | 
         
            +
                    elif self.conditioning_key == 'adm':
         
     | 
| 689 | 
         
            +
                        cc = c_crossattn[0]
         
     | 
| 690 | 
         
            +
                        out = self.diffusion_model(x, t, y=cc)
         
     | 
| 691 | 
         
            +
                    elif self.conditioning_key == 'hybrid-adm':
         
     | 
| 692 | 
         
            +
                        assert c_adm is not None
         
     | 
| 693 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 694 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 695 | 
         
            +
                        out = self.diffusion_model(xc, t, context=cc, y=c_adm, **kwargs)
         
     | 
| 696 | 
         
            +
                    elif self.conditioning_key == 'hybrid-time':
         
     | 
| 697 | 
         
            +
                        assert s is not None
         
     | 
| 698 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 699 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 700 | 
         
            +
                        out = self.diffusion_model(xc, t, context=cc, s=s)
         
     | 
| 701 | 
         
            +
                    elif self.conditioning_key == 'concat-time-mask':
         
     | 
| 702 | 
         
            +
                        # assert s is not None
         
     | 
| 703 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 704 | 
         
            +
                        out = self.diffusion_model(xc, t, context=None, s=s, mask=mask)
         
     | 
| 705 | 
         
            +
                    elif self.conditioning_key == 'concat-adm-mask':
         
     | 
| 706 | 
         
            +
                        # assert s is not None
         
     | 
| 707 | 
         
            +
                        if c_concat is not None:
         
     | 
| 708 | 
         
            +
                            xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 709 | 
         
            +
                        else:
         
     | 
| 710 | 
         
            +
                            xc = x
         
     | 
| 711 | 
         
            +
                        out = self.diffusion_model(xc, t, context=None, y=s, mask=mask)
         
     | 
| 712 | 
         
            +
                    elif self.conditioning_key == 'hybrid-adm-mask':
         
     | 
| 713 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 714 | 
         
            +
                        if c_concat is not None:
         
     | 
| 715 | 
         
            +
                            xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 716 | 
         
            +
                        else:
         
     | 
| 717 | 
         
            +
                            xc = x
         
     | 
| 718 | 
         
            +
                        out = self.diffusion_model(xc, t, context=cc, y=s, mask=mask)
         
     | 
| 719 | 
         
            +
                    elif self.conditioning_key == 'hybrid-time-adm': # adm means y, e.g., class index
         
     | 
| 720 | 
         
            +
                        # assert s is not None
         
     | 
| 721 | 
         
            +
                        assert c_adm is not None
         
     | 
| 722 | 
         
            +
                        xc = torch.cat([x] + c_concat, dim=1)
         
     | 
| 723 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 724 | 
         
            +
                        out = self.diffusion_model(xc, t, context=cc, s=s, y=c_adm)
         
     | 
| 725 | 
         
            +
                    elif self.conditioning_key == 'crossattn-adm':
         
     | 
| 726 | 
         
            +
                        assert c_adm is not None
         
     | 
| 727 | 
         
            +
                        cc = torch.cat(c_crossattn, 1)
         
     | 
| 728 | 
         
            +
                        out = self.diffusion_model(x, t, context=cc, y=c_adm)
         
     | 
| 729 | 
         
            +
                    else:
         
     | 
| 730 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
                    return out
         
     | 
    	
        lvdm/models/samplers/__pycache__/ddim.cpython-39.pyc
    ADDED
    
    | 
         Binary file (8.03 kB). View file 
     | 
| 
         | 
    	
        lvdm/models/samplers/__pycache__/ddim_multiplecond.cpython-39.pyc
    ADDED
    
    | 
         Binary file (7.74 kB). View file 
     | 
| 
         | 
    	
        lvdm/models/samplers/ddim.py
    ADDED
    
    | 
         @@ -0,0 +1,306 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            from tqdm import tqdm
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
         
     | 
| 5 | 
         
            +
            from lvdm.common import noise_like
         
     | 
| 6 | 
         
            +
            from lvdm.common import extract_into_tensor
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class DDIMSampler(object):
         
     | 
| 10 | 
         
            +
                def __init__(self, model, schedule="linear", **kwargs):
         
     | 
| 11 | 
         
            +
                    super().__init__()
         
     | 
| 12 | 
         
            +
                    self.model = model
         
     | 
| 13 | 
         
            +
                    self.ddpm_num_timesteps = model.num_timesteps
         
     | 
| 14 | 
         
            +
                    self.schedule = schedule
         
     | 
| 15 | 
         
            +
                    self.counter = 0
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def register_buffer(self, name, attr):
         
     | 
| 18 | 
         
            +
                    if type(attr) == torch.Tensor:
         
     | 
| 19 | 
         
            +
                        if attr.device != torch.device("cuda"):
         
     | 
| 20 | 
         
            +
                            attr = attr.to(torch.device("cuda"))
         
     | 
| 21 | 
         
            +
                    setattr(self, name, attr)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         
     | 
| 24 | 
         
            +
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         
     | 
| 25 | 
         
            +
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         
     | 
| 26 | 
         
            +
                    alphas_cumprod = self.model.alphas_cumprod
         
     | 
| 27 | 
         
            +
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 28 | 
         
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    if self.model.use_dynamic_rescale:
         
     | 
| 31 | 
         
            +
                        self.ddim_scale_arr = self.model.scale_arr[self.ddim_timesteps]
         
     | 
| 32 | 
         
            +
                        self.ddim_scale_arr_prev = torch.cat([self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]])
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    self.register_buffer('betas', to_torch(self.model.betas))
         
     | 
| 35 | 
         
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 36 | 
         
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 39 | 
         
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         
     | 
| 40 | 
         
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         
     | 
| 41 | 
         
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         
     | 
| 42 | 
         
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         
     | 
| 43 | 
         
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    # ddim sampling parameters
         
     | 
| 46 | 
         
            +
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         
     | 
| 47 | 
         
            +
                                                                                               ddim_timesteps=self.ddim_timesteps,
         
     | 
| 48 | 
         
            +
                                                                                               eta=ddim_eta,verbose=verbose)
         
     | 
| 49 | 
         
            +
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         
     | 
| 50 | 
         
            +
                    self.register_buffer('ddim_alphas', ddim_alphas)
         
     | 
| 51 | 
         
            +
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         
     | 
| 52 | 
         
            +
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         
     | 
| 53 | 
         
            +
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         
     | 
| 54 | 
         
            +
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         
     | 
| 55 | 
         
            +
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         
     | 
| 56 | 
         
            +
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                @torch.no_grad()
         
     | 
| 59 | 
         
            +
                def sample(self,
         
     | 
| 60 | 
         
            +
                           S,
         
     | 
| 61 | 
         
            +
                           batch_size,
         
     | 
| 62 | 
         
            +
                           shape,
         
     | 
| 63 | 
         
            +
                           conditioning=None,
         
     | 
| 64 | 
         
            +
                           callback=None,
         
     | 
| 65 | 
         
            +
                           normals_sequence=None,
         
     | 
| 66 | 
         
            +
                           img_callback=None,
         
     | 
| 67 | 
         
            +
                           quantize_x0=False,
         
     | 
| 68 | 
         
            +
                           eta=0.,
         
     | 
| 69 | 
         
            +
                           mask=None,
         
     | 
| 70 | 
         
            +
                           x0=None,
         
     | 
| 71 | 
         
            +
                           temperature=1.,
         
     | 
| 72 | 
         
            +
                           noise_dropout=0.,
         
     | 
| 73 | 
         
            +
                           score_corrector=None,
         
     | 
| 74 | 
         
            +
                           corrector_kwargs=None,
         
     | 
| 75 | 
         
            +
                           verbose=True,
         
     | 
| 76 | 
         
            +
                           schedule_verbose=False,
         
     | 
| 77 | 
         
            +
                           x_T=None,
         
     | 
| 78 | 
         
            +
                           log_every_t=100,
         
     | 
| 79 | 
         
            +
                           unconditional_guidance_scale=1.,
         
     | 
| 80 | 
         
            +
                           unconditional_conditioning=None,
         
     | 
| 81 | 
         
            +
                           precision=None,
         
     | 
| 82 | 
         
            +
                           fs=None,
         
     | 
| 83 | 
         
            +
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 84 | 
         
            +
                           **kwargs
         
     | 
| 85 | 
         
            +
                           ):
         
     | 
| 86 | 
         
            +
                    
         
     | 
| 87 | 
         
            +
                    # check condition bs
         
     | 
| 88 | 
         
            +
                    if conditioning is not None:
         
     | 
| 89 | 
         
            +
                        if isinstance(conditioning, dict):
         
     | 
| 90 | 
         
            +
                            try:
         
     | 
| 91 | 
         
            +
                                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         
     | 
| 92 | 
         
            +
                            except:
         
     | 
| 93 | 
         
            +
                                cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                            if cbs != batch_size:
         
     | 
| 96 | 
         
            +
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 97 | 
         
            +
                        else:
         
     | 
| 98 | 
         
            +
                            if conditioning.shape[0] != batch_size:
         
     | 
| 99 | 
         
            +
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
         
     | 
| 102 | 
         
            +
                    
         
     | 
| 103 | 
         
            +
                    # make shape
         
     | 
| 104 | 
         
            +
                    if len(shape) == 3:
         
     | 
| 105 | 
         
            +
                        C, H, W = shape
         
     | 
| 106 | 
         
            +
                        size = (batch_size, C, H, W)
         
     | 
| 107 | 
         
            +
                    elif len(shape) == 4:
         
     | 
| 108 | 
         
            +
                        C, T, H, W = shape
         
     | 
| 109 | 
         
            +
                        size = (batch_size, C, T, H, W)
         
     | 
| 110 | 
         
            +
                    # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
         
     | 
| 111 | 
         
            +
                    
         
     | 
| 112 | 
         
            +
                    samples, intermediates = self.ddim_sampling(conditioning, size,
         
     | 
| 113 | 
         
            +
                                                                callback=callback,
         
     | 
| 114 | 
         
            +
                                                                img_callback=img_callback,
         
     | 
| 115 | 
         
            +
                                                                quantize_denoised=quantize_x0,
         
     | 
| 116 | 
         
            +
                                                                mask=mask, x0=x0,
         
     | 
| 117 | 
         
            +
                                                                ddim_use_original_steps=False,
         
     | 
| 118 | 
         
            +
                                                                noise_dropout=noise_dropout,
         
     | 
| 119 | 
         
            +
                                                                temperature=temperature,
         
     | 
| 120 | 
         
            +
                                                                score_corrector=score_corrector,
         
     | 
| 121 | 
         
            +
                                                                corrector_kwargs=corrector_kwargs,
         
     | 
| 122 | 
         
            +
                                                                x_T=x_T,
         
     | 
| 123 | 
         
            +
                                                                log_every_t=log_every_t,
         
     | 
| 124 | 
         
            +
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 125 | 
         
            +
                                                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 126 | 
         
            +
                                                                verbose=verbose,
         
     | 
| 127 | 
         
            +
                                                                precision=precision,
         
     | 
| 128 | 
         
            +
                                                                fs=fs,
         
     | 
| 129 | 
         
            +
                                                                **kwargs)
         
     | 
| 130 | 
         
            +
                    return samples, intermediates
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                @torch.no_grad()
         
     | 
| 133 | 
         
            +
                def ddim_sampling(self, cond, shape,
         
     | 
| 134 | 
         
            +
                                  x_T=None, ddim_use_original_steps=False,
         
     | 
| 135 | 
         
            +
                                  callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 136 | 
         
            +
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         
     | 
| 137 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 138 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,precision=None,fs=None,
         
     | 
| 139 | 
         
            +
                                  **kwargs):
         
     | 
| 140 | 
         
            +
                    device = self.model.betas.device        
         
     | 
| 141 | 
         
            +
                    b = shape[0]
         
     | 
| 142 | 
         
            +
                    if x_T is None:
         
     | 
| 143 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 144 | 
         
            +
                    else:
         
     | 
| 145 | 
         
            +
                        img = x_T
         
     | 
| 146 | 
         
            +
                    if precision is not None:
         
     | 
| 147 | 
         
            +
                        if precision == 16:
         
     | 
| 148 | 
         
            +
                            img = img.to(dtype=torch.float16)
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    if timesteps is None:
         
     | 
| 151 | 
         
            +
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         
     | 
| 152 | 
         
            +
                    elif timesteps is not None and not ddim_use_original_steps:
         
     | 
| 153 | 
         
            +
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         
     | 
| 154 | 
         
            +
                        timesteps = self.ddim_timesteps[:subset_end]
         
     | 
| 155 | 
         
            +
                        
         
     | 
| 156 | 
         
            +
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         
     | 
| 157 | 
         
            +
                    time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
         
     | 
| 158 | 
         
            +
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         
     | 
| 159 | 
         
            +
                    if verbose:
         
     | 
| 160 | 
         
            +
                        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
         
     | 
| 161 | 
         
            +
                    else:
         
     | 
| 162 | 
         
            +
                        iterator = time_range
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    clean_cond = kwargs.pop("clean_cond", False)
         
     | 
| 165 | 
         
            +
                    for i, step in enumerate(iterator):
         
     | 
| 166 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 167 | 
         
            +
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                        ## use mask to blend noised original latent (img_orig) & new sampled latent (img)
         
     | 
| 170 | 
         
            +
                        if mask is not None:
         
     | 
| 171 | 
         
            +
                            assert x0 is not None
         
     | 
| 172 | 
         
            +
                            if clean_cond:
         
     | 
| 173 | 
         
            +
                                img_orig = x0
         
     | 
| 174 | 
         
            +
                            else:
         
     | 
| 175 | 
         
            +
                                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass? <ddim inversion>
         
     | 
| 176 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img # keep original & modify use img
         
     | 
| 177 | 
         
            +
                                        
         
     | 
| 178 | 
         
            +
                        outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         
     | 
| 179 | 
         
            +
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         
     | 
| 180 | 
         
            +
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         
     | 
| 181 | 
         
            +
                                                  corrector_kwargs=corrector_kwargs,
         
     | 
| 182 | 
         
            +
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 183 | 
         
            +
                                                  unconditional_conditioning=unconditional_conditioning,
         
     | 
| 184 | 
         
            +
                                                  mask=mask,x0=x0,fs=fs,
         
     | 
| 185 | 
         
            +
                                                  **kwargs)
         
     | 
| 186 | 
         
            +
                        
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                        img, pred_x0 = outs
         
     | 
| 190 | 
         
            +
                        if callback: callback(i)
         
     | 
| 191 | 
         
            +
                        if img_callback: img_callback(pred_x0, i)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                        if index % log_every_t == 0 or index == total_steps - 1:
         
     | 
| 194 | 
         
            +
                            intermediates['x_inter'].append(img)
         
     | 
| 195 | 
         
            +
                            intermediates['pred_x0'].append(pred_x0)
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    return img, intermediates
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                @torch.no_grad()
         
     | 
| 200 | 
         
            +
                def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         
     | 
| 201 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 202 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,
         
     | 
| 203 | 
         
            +
                                  uc_type=None, conditional_guidance_scale_temporal=None,mask=None,x0=None, **kwargs):
         
     | 
| 204 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 205 | 
         
            +
                    if x.dim() == 5:
         
     | 
| 206 | 
         
            +
                        is_video = True
         
     | 
| 207 | 
         
            +
                    else:
         
     | 
| 208 | 
         
            +
                        is_video = False
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         
     | 
| 211 | 
         
            +
                        e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
         
     | 
| 212 | 
         
            +
                    else:
         
     | 
| 213 | 
         
            +
                        ### with unconditional condition
         
     | 
| 214 | 
         
            +
                        if isinstance(c, torch.Tensor) or isinstance(c, dict):
         
     | 
| 215 | 
         
            +
                            e_t_cond = self.model.apply_model(x, t, c, **kwargs)
         
     | 
| 216 | 
         
            +
                            e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
         
     | 
| 217 | 
         
            +
                        else:
         
     | 
| 218 | 
         
            +
                            raise NotImplementedError
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                        e_t = e_t_uncond + unconditional_guidance_scale * (e_t_cond - e_t_uncond)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    if self.model.parameterization == "v":
         
     | 
| 223 | 
         
            +
                        e_t = self.model.predict_eps_from_z_and_v(x, t, e_t)
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 227 | 
         
            +
                        assert self.model.parameterization == "eps"
         
     | 
| 228 | 
         
            +
                        e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         
     | 
| 231 | 
         
            +
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         
     | 
| 232 | 
         
            +
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         
     | 
| 233 | 
         
            +
                    sigmas = self.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         
     | 
| 234 | 
         
            +
                    # select parameters corresponding to the currently considered timestep
         
     | 
| 235 | 
         
            +
                    
         
     | 
| 236 | 
         
            +
                    if is_video:
         
     | 
| 237 | 
         
            +
                        size = (b, 1, 1, 1, 1)
         
     | 
| 238 | 
         
            +
                    else:
         
     | 
| 239 | 
         
            +
                        size = (b, 1, 1, 1)
         
     | 
| 240 | 
         
            +
                    a_t = torch.full(size, alphas[index], device=device)
         
     | 
| 241 | 
         
            +
                    a_prev = torch.full(size, alphas_prev[index], device=device)
         
     | 
| 242 | 
         
            +
                    sigma_t = torch.full(size, sigmas[index], device=device)
         
     | 
| 243 | 
         
            +
                    sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    # current prediction for x_0
         
     | 
| 246 | 
         
            +
                    if self.model.parameterization != "v":
         
     | 
| 247 | 
         
            +
                        pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         
     | 
| 248 | 
         
            +
                    else:
         
     | 
| 249 | 
         
            +
                        pred_x0 = self.model.predict_start_from_z_and_v(x, t, e_t)
         
     | 
| 250 | 
         
            +
                    
         
     | 
| 251 | 
         
            +
                    if self.model.use_dynamic_rescale:
         
     | 
| 252 | 
         
            +
                        scale_t = torch.full(size, self.ddim_scale_arr[index], device=device)
         
     | 
| 253 | 
         
            +
                        prev_scale_t = torch.full(size, self.ddim_scale_arr_prev[index], device=device)
         
     | 
| 254 | 
         
            +
                        rescale = (prev_scale_t / scale_t)
         
     | 
| 255 | 
         
            +
                        pred_x0 *= rescale
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    if quantize_denoised:
         
     | 
| 258 | 
         
            +
                        pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         
     | 
| 259 | 
         
            +
                    # direction pointing to x_t
         
     | 
| 260 | 
         
            +
                    dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                    noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 263 | 
         
            +
                    if noise_dropout > 0.:
         
     | 
| 264 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 265 | 
         
            +
                
         
     | 
| 266 | 
         
            +
                    x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                    return x_prev, pred_x0
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                @torch.no_grad()
         
     | 
| 271 | 
         
            +
                def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
         
     | 
| 272 | 
         
            +
                           use_original_steps=False, callback=None):
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                    timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
         
     | 
| 275 | 
         
            +
                    timesteps = timesteps[:t_start]
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                    time_range = np.flip(timesteps)
         
     | 
| 278 | 
         
            +
                    total_steps = timesteps.shape[0]
         
     | 
| 279 | 
         
            +
                    print(f"Running DDIM Sampling with {total_steps} timesteps")
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
         
     | 
| 282 | 
         
            +
                    x_dec = x_latent
         
     | 
| 283 | 
         
            +
                    for i, step in enumerate(iterator):
         
     | 
| 284 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 285 | 
         
            +
                        ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
         
     | 
| 286 | 
         
            +
                        x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
         
     | 
| 287 | 
         
            +
                                                      unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 288 | 
         
            +
                                                      unconditional_conditioning=unconditional_conditioning)
         
     | 
| 289 | 
         
            +
                        if callback: callback(i)
         
     | 
| 290 | 
         
            +
                    return x_dec
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                @torch.no_grad()
         
     | 
| 293 | 
         
            +
                def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
         
     | 
| 294 | 
         
            +
                    # fast, but does not allow for exact reconstruction
         
     | 
| 295 | 
         
            +
                    # t serves as an index to gather the correct alphas
         
     | 
| 296 | 
         
            +
                    if use_original_steps:
         
     | 
| 297 | 
         
            +
                        sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
         
     | 
| 298 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
         
     | 
| 299 | 
         
            +
                    else:
         
     | 
| 300 | 
         
            +
                        sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
         
     | 
| 301 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    if noise is None:
         
     | 
| 304 | 
         
            +
                        noise = torch.randn_like(x0)
         
     | 
| 305 | 
         
            +
                    return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
         
     | 
| 306 | 
         
            +
                            extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
         
     | 
    	
        lvdm/models/samplers/ddim_multiplecond.py
    ADDED
    
    | 
         @@ -0,0 +1,297 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            from tqdm import tqdm
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
         
     | 
| 5 | 
         
            +
            from lvdm.common import noise_like
         
     | 
| 6 | 
         
            +
            from lvdm.common import extract_into_tensor
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class DDIMSampler(object):
         
     | 
| 10 | 
         
            +
                def __init__(self, model, schedule="linear", **kwargs):
         
     | 
| 11 | 
         
            +
                    super().__init__()
         
     | 
| 12 | 
         
            +
                    self.model = model
         
     | 
| 13 | 
         
            +
                    self.ddpm_num_timesteps = model.num_timesteps
         
     | 
| 14 | 
         
            +
                    self.schedule = schedule
         
     | 
| 15 | 
         
            +
                    self.counter = 0
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
                def register_buffer(self, name, attr):
         
     | 
| 18 | 
         
            +
                    if type(attr) == torch.Tensor:
         
     | 
| 19 | 
         
            +
                        if attr.device != torch.device("cuda"):
         
     | 
| 20 | 
         
            +
                            attr = attr.to(torch.device("cuda"))
         
     | 
| 21 | 
         
            +
                    setattr(self, name, attr)
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
         
     | 
| 24 | 
         
            +
                    self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
         
     | 
| 25 | 
         
            +
                                                              num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
         
     | 
| 26 | 
         
            +
                    alphas_cumprod = self.model.alphas_cumprod
         
     | 
| 27 | 
         
            +
                    assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
         
     | 
| 28 | 
         
            +
                    to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                    self.register_buffer('betas', to_torch(self.model.betas))
         
     | 
| 31 | 
         
            +
                    self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
         
     | 
| 32 | 
         
            +
                    self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
                    # calculations for diffusion q(x_t | x_{t-1}) and others
         
     | 
| 35 | 
         
            +
                    self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
         
     | 
| 36 | 
         
            +
                    self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
         
     | 
| 37 | 
         
            +
                    self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
         
     | 
| 38 | 
         
            +
                    self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
         
     | 
| 39 | 
         
            +
                    self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                    # ddim sampling parameters
         
     | 
| 42 | 
         
            +
                    ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
         
     | 
| 43 | 
         
            +
                                                                                               ddim_timesteps=self.ddim_timesteps,
         
     | 
| 44 | 
         
            +
                                                                                               eta=ddim_eta,verbose=verbose)
         
     | 
| 45 | 
         
            +
                    self.register_buffer('ddim_sigmas', ddim_sigmas)
         
     | 
| 46 | 
         
            +
                    self.register_buffer('ddim_alphas', ddim_alphas)
         
     | 
| 47 | 
         
            +
                    self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
         
     | 
| 48 | 
         
            +
                    self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
         
     | 
| 49 | 
         
            +
                    sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
         
     | 
| 50 | 
         
            +
                        (1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
         
     | 
| 51 | 
         
            +
                                    1 - self.alphas_cumprod / self.alphas_cumprod_prev))
         
     | 
| 52 | 
         
            +
                    self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                @torch.no_grad()
         
     | 
| 55 | 
         
            +
                def sample(self,
         
     | 
| 56 | 
         
            +
                           S,
         
     | 
| 57 | 
         
            +
                           batch_size,
         
     | 
| 58 | 
         
            +
                           shape,
         
     | 
| 59 | 
         
            +
                           conditioning=None,
         
     | 
| 60 | 
         
            +
                           callback=None,
         
     | 
| 61 | 
         
            +
                           normals_sequence=None,
         
     | 
| 62 | 
         
            +
                           img_callback=None,
         
     | 
| 63 | 
         
            +
                           quantize_x0=False,
         
     | 
| 64 | 
         
            +
                           eta=0.,
         
     | 
| 65 | 
         
            +
                           mask=None,
         
     | 
| 66 | 
         
            +
                           x0=None,
         
     | 
| 67 | 
         
            +
                           temperature=1.,
         
     | 
| 68 | 
         
            +
                           noise_dropout=0.,
         
     | 
| 69 | 
         
            +
                           score_corrector=None,
         
     | 
| 70 | 
         
            +
                           corrector_kwargs=None,
         
     | 
| 71 | 
         
            +
                           verbose=True,
         
     | 
| 72 | 
         
            +
                           schedule_verbose=False,
         
     | 
| 73 | 
         
            +
                           x_T=None,
         
     | 
| 74 | 
         
            +
                           log_every_t=100,
         
     | 
| 75 | 
         
            +
                           unconditional_guidance_scale=1.,
         
     | 
| 76 | 
         
            +
                           unconditional_conditioning=None,
         
     | 
| 77 | 
         
            +
                           precision=None,
         
     | 
| 78 | 
         
            +
                           fs=None,
         
     | 
| 79 | 
         
            +
                           # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
         
     | 
| 80 | 
         
            +
                           **kwargs
         
     | 
| 81 | 
         
            +
                           ):
         
     | 
| 82 | 
         
            +
                    
         
     | 
| 83 | 
         
            +
                    # check condition bs
         
     | 
| 84 | 
         
            +
                    if conditioning is not None:
         
     | 
| 85 | 
         
            +
                        if isinstance(conditioning, dict):
         
     | 
| 86 | 
         
            +
                            try:
         
     | 
| 87 | 
         
            +
                                cbs = conditioning[list(conditioning.keys())[0]].shape[0]
         
     | 
| 88 | 
         
            +
                            except:
         
     | 
| 89 | 
         
            +
                                cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                            if cbs != batch_size:
         
     | 
| 92 | 
         
            +
                                print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
         
     | 
| 93 | 
         
            +
                        else:
         
     | 
| 94 | 
         
            +
                            if conditioning.shape[0] != batch_size:
         
     | 
| 95 | 
         
            +
                                print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=schedule_verbose)
         
     | 
| 98 | 
         
            +
                    
         
     | 
| 99 | 
         
            +
                    # make shape
         
     | 
| 100 | 
         
            +
                    if len(shape) == 3:
         
     | 
| 101 | 
         
            +
                        C, H, W = shape
         
     | 
| 102 | 
         
            +
                        size = (batch_size, C, H, W)
         
     | 
| 103 | 
         
            +
                    elif len(shape) == 4:
         
     | 
| 104 | 
         
            +
                        C, T, H, W = shape
         
     | 
| 105 | 
         
            +
                        size = (batch_size, C, T, H, W)
         
     | 
| 106 | 
         
            +
                    # print(f'Data shape for DDIM sampling is {size}, eta {eta}')
         
     | 
| 107 | 
         
            +
                    
         
     | 
| 108 | 
         
            +
                    samples, intermediates = self.ddim_sampling(conditioning, size,
         
     | 
| 109 | 
         
            +
                                                                callback=callback,
         
     | 
| 110 | 
         
            +
                                                                img_callback=img_callback,
         
     | 
| 111 | 
         
            +
                                                                quantize_denoised=quantize_x0,
         
     | 
| 112 | 
         
            +
                                                                mask=mask, x0=x0,
         
     | 
| 113 | 
         
            +
                                                                ddim_use_original_steps=False,
         
     | 
| 114 | 
         
            +
                                                                noise_dropout=noise_dropout,
         
     | 
| 115 | 
         
            +
                                                                temperature=temperature,
         
     | 
| 116 | 
         
            +
                                                                score_corrector=score_corrector,
         
     | 
| 117 | 
         
            +
                                                                corrector_kwargs=corrector_kwargs,
         
     | 
| 118 | 
         
            +
                                                                x_T=x_T,
         
     | 
| 119 | 
         
            +
                                                                log_every_t=log_every_t,
         
     | 
| 120 | 
         
            +
                                                                unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 121 | 
         
            +
                                                                unconditional_conditioning=unconditional_conditioning,
         
     | 
| 122 | 
         
            +
                                                                verbose=verbose,
         
     | 
| 123 | 
         
            +
                                                                precision=precision,
         
     | 
| 124 | 
         
            +
                                                                fs=fs,
         
     | 
| 125 | 
         
            +
                                                                **kwargs)
         
     | 
| 126 | 
         
            +
                    return samples, intermediates
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                @torch.no_grad()
         
     | 
| 129 | 
         
            +
                def ddim_sampling(self, cond, shape,
         
     | 
| 130 | 
         
            +
                                  x_T=None, ddim_use_original_steps=False,
         
     | 
| 131 | 
         
            +
                                  callback=None, timesteps=None, quantize_denoised=False,
         
     | 
| 132 | 
         
            +
                                  mask=None, x0=None, img_callback=None, log_every_t=100,
         
     | 
| 133 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 134 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,precision=None,fs=None,
         
     | 
| 135 | 
         
            +
                                  **kwargs):
         
     | 
| 136 | 
         
            +
                    device = self.model.betas.device        
         
     | 
| 137 | 
         
            +
                    b = shape[0]
         
     | 
| 138 | 
         
            +
                    if x_T is None:
         
     | 
| 139 | 
         
            +
                        img = torch.randn(shape, device=device)
         
     | 
| 140 | 
         
            +
                    else:
         
     | 
| 141 | 
         
            +
                        img = x_T
         
     | 
| 142 | 
         
            +
                    if precision is not None:
         
     | 
| 143 | 
         
            +
                        if precision == 16:
         
     | 
| 144 | 
         
            +
                            img = img.to(dtype=torch.float16)
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    
         
     | 
| 147 | 
         
            +
                    if timesteps is None:
         
     | 
| 148 | 
         
            +
                        timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
         
     | 
| 149 | 
         
            +
                    elif timesteps is not None and not ddim_use_original_steps:
         
     | 
| 150 | 
         
            +
                        subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
         
     | 
| 151 | 
         
            +
                        timesteps = self.ddim_timesteps[:subset_end]
         
     | 
| 152 | 
         
            +
                        
         
     | 
| 153 | 
         
            +
                    intermediates = {'x_inter': [img], 'pred_x0': [img]}
         
     | 
| 154 | 
         
            +
                    time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
         
     | 
| 155 | 
         
            +
                    total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
         
     | 
| 156 | 
         
            +
                    if verbose:
         
     | 
| 157 | 
         
            +
                        iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
         
     | 
| 158 | 
         
            +
                    else:
         
     | 
| 159 | 
         
            +
                        iterator = time_range
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    clean_cond = kwargs.pop("clean_cond", False)
         
     | 
| 162 | 
         
            +
                    for i, step in enumerate(iterator):
         
     | 
| 163 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 164 | 
         
            +
                        ts = torch.full((b,), step, device=device, dtype=torch.long)
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                        ## use mask to blend noised original latent (img_orig) & new sampled latent (img)
         
     | 
| 167 | 
         
            +
                        if mask is not None:
         
     | 
| 168 | 
         
            +
                            assert x0 is not None
         
     | 
| 169 | 
         
            +
                            if clean_cond:
         
     | 
| 170 | 
         
            +
                                img_orig = x0
         
     | 
| 171 | 
         
            +
                            else:
         
     | 
| 172 | 
         
            +
                                img_orig = self.model.q_sample(x0, ts)  # TODO: deterministic forward pass? <ddim inversion>
         
     | 
| 173 | 
         
            +
                            img = img_orig * mask + (1. - mask) * img # keep original & modify use img
         
     | 
| 174 | 
         
            +
                                        
         
     | 
| 175 | 
         
            +
                        outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
         
     | 
| 176 | 
         
            +
                                                  quantize_denoised=quantize_denoised, temperature=temperature,
         
     | 
| 177 | 
         
            +
                                                  noise_dropout=noise_dropout, score_corrector=score_corrector,
         
     | 
| 178 | 
         
            +
                                                  corrector_kwargs=corrector_kwargs,
         
     | 
| 179 | 
         
            +
                                                  unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 180 | 
         
            +
                                                  unconditional_conditioning=unconditional_conditioning,
         
     | 
| 181 | 
         
            +
                                                  mask=mask,x0=x0,fs=fs,
         
     | 
| 182 | 
         
            +
                                                  **kwargs)
         
     | 
| 183 | 
         
            +
                        
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                        img, pred_x0 = outs
         
     | 
| 187 | 
         
            +
                        if callback: callback(i)
         
     | 
| 188 | 
         
            +
                        if img_callback: img_callback(pred_x0, i)
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                        if index % log_every_t == 0 or index == total_steps - 1:
         
     | 
| 191 | 
         
            +
                            intermediates['x_inter'].append(img)
         
     | 
| 192 | 
         
            +
                            intermediates['pred_x0'].append(pred_x0)
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    return img, intermediates
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                @torch.no_grad()
         
     | 
| 197 | 
         
            +
                def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
         
     | 
| 198 | 
         
            +
                                  temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
         
     | 
| 199 | 
         
            +
                                  unconditional_guidance_scale=1., unconditional_conditioning=None,
         
     | 
| 200 | 
         
            +
                                  uc_type=None, cfg_img=None,mask=None,x0=None, **kwargs):
         
     | 
| 201 | 
         
            +
                    b, *_, device = *x.shape, x.device
         
     | 
| 202 | 
         
            +
                    if x.dim() == 5:
         
     | 
| 203 | 
         
            +
                        is_video = True
         
     | 
| 204 | 
         
            +
                    else:
         
     | 
| 205 | 
         
            +
                        is_video = False
         
     | 
| 206 | 
         
            +
                    if cfg_img is None:
         
     | 
| 207 | 
         
            +
                        cfg_img = unconditional_guidance_scale
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                    unconditional_conditioning_img_nonetext = kwargs['unconditional_conditioning_img_nonetext']
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                    
         
     | 
| 212 | 
         
            +
                    if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
         
     | 
| 213 | 
         
            +
                        e_t = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
         
     | 
| 214 | 
         
            +
                    else:
         
     | 
| 215 | 
         
            +
                        ### with unconditional condition
         
     | 
| 216 | 
         
            +
                        e_t_cond = self.model.apply_model(x, t, c, **kwargs)
         
     | 
| 217 | 
         
            +
                        e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
         
     | 
| 218 | 
         
            +
                        e_t_uncond_img = self.model.apply_model(x, t, unconditional_conditioning_img_nonetext, **kwargs)
         
     | 
| 219 | 
         
            +
                        # text cfg
         
     | 
| 220 | 
         
            +
                        e_t = e_t_uncond + cfg_img * (e_t_uncond_img - e_t_uncond) + unconditional_guidance_scale * (e_t_cond - e_t_uncond_img)
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    if self.model.parameterization == "v":
         
     | 
| 223 | 
         
            +
                        e_t = self.model.predict_eps_from_z_and_v(x, t, e_t)
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                    if score_corrector is not None:
         
     | 
| 227 | 
         
            +
                        assert self.model.parameterization == "eps"
         
     | 
| 228 | 
         
            +
                        e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
         
     | 
| 231 | 
         
            +
                    alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
         
     | 
| 232 | 
         
            +
                    sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
         
     | 
| 233 | 
         
            +
                    sigmas = self.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
         
     | 
| 234 | 
         
            +
                    # select parameters corresponding to the currently considered timestep
         
     | 
| 235 | 
         
            +
                    
         
     | 
| 236 | 
         
            +
                    if is_video:
         
     | 
| 237 | 
         
            +
                        size = (b, 1, 1, 1, 1)
         
     | 
| 238 | 
         
            +
                    else:
         
     | 
| 239 | 
         
            +
                        size = (b, 1, 1, 1)
         
     | 
| 240 | 
         
            +
                    a_t = torch.full(size, alphas[index], device=device)
         
     | 
| 241 | 
         
            +
                    a_prev = torch.full(size, alphas_prev[index], device=device)
         
     | 
| 242 | 
         
            +
                    sigma_t = torch.full(size, sigmas[index], device=device)
         
     | 
| 243 | 
         
            +
                    sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    # current prediction for x_0
         
     | 
| 246 | 
         
            +
                    pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                    if quantize_denoised:
         
     | 
| 249 | 
         
            +
                        pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
         
     | 
| 250 | 
         
            +
                    # direction pointing to x_t
         
     | 
| 251 | 
         
            +
                    dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                    noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
         
     | 
| 254 | 
         
            +
                    if noise_dropout > 0.:
         
     | 
| 255 | 
         
            +
                        noise = torch.nn.functional.dropout(noise, p=noise_dropout)
         
     | 
| 256 | 
         
            +
                
         
     | 
| 257 | 
         
            +
                    x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    return x_prev, pred_x0
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                @torch.no_grad()
         
     | 
| 262 | 
         
            +
                def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
         
     | 
| 263 | 
         
            +
                           use_original_steps=False, callback=None):
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                    timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
         
     | 
| 266 | 
         
            +
                    timesteps = timesteps[:t_start]
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                    time_range = np.flip(timesteps)
         
     | 
| 269 | 
         
            +
                    total_steps = timesteps.shape[0]
         
     | 
| 270 | 
         
            +
                    print(f"Running DDIM Sampling with {total_steps} timesteps")
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                    iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
         
     | 
| 273 | 
         
            +
                    x_dec = x_latent
         
     | 
| 274 | 
         
            +
                    for i, step in enumerate(iterator):
         
     | 
| 275 | 
         
            +
                        index = total_steps - i - 1
         
     | 
| 276 | 
         
            +
                        ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
         
     | 
| 277 | 
         
            +
                        x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
         
     | 
| 278 | 
         
            +
                                                      unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 279 | 
         
            +
                                                      unconditional_conditioning=unconditional_conditioning)
         
     | 
| 280 | 
         
            +
                        if callback: callback(i)
         
     | 
| 281 | 
         
            +
                    return x_dec
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                @torch.no_grad()
         
     | 
| 284 | 
         
            +
                def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
         
     | 
| 285 | 
         
            +
                    # fast, but does not allow for exact reconstruction
         
     | 
| 286 | 
         
            +
                    # t serves as an index to gather the correct alphas
         
     | 
| 287 | 
         
            +
                    if use_original_steps:
         
     | 
| 288 | 
         
            +
                        sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
         
     | 
| 289 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
         
     | 
| 290 | 
         
            +
                    else:
         
     | 
| 291 | 
         
            +
                        sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
         
     | 
| 292 | 
         
            +
                        sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                    if noise is None:
         
     | 
| 295 | 
         
            +
                        noise = torch.randn_like(x0)
         
     | 
| 296 | 
         
            +
                    return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
         
     | 
| 297 | 
         
            +
                            extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
         
     | 
    	
        lvdm/models/utils_diffusion.py
    ADDED
    
    | 
         @@ -0,0 +1,104 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import math
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 5 | 
         
            +
            from einops import repeat
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
         
     | 
| 9 | 
         
            +
                """
         
     | 
| 10 | 
         
            +
                Create sinusoidal timestep embeddings.
         
     | 
| 11 | 
         
            +
                :param timesteps: a 1-D Tensor of N indices, one per batch element.
         
     | 
| 12 | 
         
            +
                                  These may be fractional.
         
     | 
| 13 | 
         
            +
                :param dim: the dimension of the output.
         
     | 
| 14 | 
         
            +
                :param max_period: controls the minimum frequency of the embeddings.
         
     | 
| 15 | 
         
            +
                :return: an [N x dim] Tensor of positional embeddings.
         
     | 
| 16 | 
         
            +
                """
         
     | 
| 17 | 
         
            +
                if not repeat_only:
         
     | 
| 18 | 
         
            +
                    half = dim // 2
         
     | 
| 19 | 
         
            +
                    freqs = torch.exp(
         
     | 
| 20 | 
         
            +
                        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
         
     | 
| 21 | 
         
            +
                    ).to(device=timesteps.device)
         
     | 
| 22 | 
         
            +
                    args = timesteps[:, None].float() * freqs[None]
         
     | 
| 23 | 
         
            +
                    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
         
     | 
| 24 | 
         
            +
                    if dim % 2:
         
     | 
| 25 | 
         
            +
                        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
         
     | 
| 26 | 
         
            +
                else:
         
     | 
| 27 | 
         
            +
                    embedding = repeat(timesteps, 'b -> b d', d=dim)
         
     | 
| 28 | 
         
            +
                return embedding
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
            def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
         
     | 
| 32 | 
         
            +
                if schedule == "linear":
         
     | 
| 33 | 
         
            +
                    betas = (
         
     | 
| 34 | 
         
            +
                            torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
         
     | 
| 35 | 
         
            +
                    )
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                elif schedule == "cosine":
         
     | 
| 38 | 
         
            +
                    timesteps = (
         
     | 
| 39 | 
         
            +
                            torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
         
     | 
| 40 | 
         
            +
                    )
         
     | 
| 41 | 
         
            +
                    alphas = timesteps / (1 + cosine_s) * np.pi / 2
         
     | 
| 42 | 
         
            +
                    alphas = torch.cos(alphas).pow(2)
         
     | 
| 43 | 
         
            +
                    alphas = alphas / alphas[0]
         
     | 
| 44 | 
         
            +
                    betas = 1 - alphas[1:] / alphas[:-1]
         
     | 
| 45 | 
         
            +
                    betas = np.clip(betas, a_min=0, a_max=0.999)
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                elif schedule == "sqrt_linear":
         
     | 
| 48 | 
         
            +
                    betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
         
     | 
| 49 | 
         
            +
                elif schedule == "sqrt":
         
     | 
| 50 | 
         
            +
                    betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
         
     | 
| 51 | 
         
            +
                else:
         
     | 
| 52 | 
         
            +
                    raise ValueError(f"schedule '{schedule}' unknown.")
         
     | 
| 53 | 
         
            +
                return betas.numpy()
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
         
     | 
| 57 | 
         
            +
                if ddim_discr_method == 'uniform':
         
     | 
| 58 | 
         
            +
                    c = num_ddpm_timesteps // num_ddim_timesteps
         
     | 
| 59 | 
         
            +
                    ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
         
     | 
| 60 | 
         
            +
                elif ddim_discr_method == 'quad':
         
     | 
| 61 | 
         
            +
                    ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
         
     | 
| 62 | 
         
            +
                else:
         
     | 
| 63 | 
         
            +
                    raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                # assert ddim_timesteps.shape[0] == num_ddim_timesteps
         
     | 
| 66 | 
         
            +
                # add one to get the final alpha values right (the ones from first scale to data during sampling)
         
     | 
| 67 | 
         
            +
                steps_out = ddim_timesteps + 1
         
     | 
| 68 | 
         
            +
                if verbose:
         
     | 
| 69 | 
         
            +
                    print(f'Selected timesteps for ddim sampler: {steps_out}')
         
     | 
| 70 | 
         
            +
                return steps_out
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
         
     | 
| 74 | 
         
            +
                # select alphas for computing the variance schedule
         
     | 
| 75 | 
         
            +
                # print(f'ddim_timesteps={ddim_timesteps}, len_alphacums={len(alphacums)}')
         
     | 
| 76 | 
         
            +
                alphas = alphacums[ddim_timesteps]
         
     | 
| 77 | 
         
            +
                alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                # according the the formula provided in https://arxiv.org/abs/2010.02502
         
     | 
| 80 | 
         
            +
                sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
         
     | 
| 81 | 
         
            +
                if verbose:
         
     | 
| 82 | 
         
            +
                    print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
         
     | 
| 83 | 
         
            +
                    print(f'For the chosen value of eta, which is {eta}, '
         
     | 
| 84 | 
         
            +
                          f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
         
     | 
| 85 | 
         
            +
                return sigmas, alphas, alphas_prev
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
            def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
         
     | 
| 89 | 
         
            +
                """
         
     | 
| 90 | 
         
            +
                Create a beta schedule that discretizes the given alpha_t_bar function,
         
     | 
| 91 | 
         
            +
                which defines the cumulative product of (1-beta) over time from t = [0,1].
         
     | 
| 92 | 
         
            +
                :param num_diffusion_timesteps: the number of betas to produce.
         
     | 
| 93 | 
         
            +
                :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
         
     | 
| 94 | 
         
            +
                                  produces the cumulative product of (1-beta) up to that
         
     | 
| 95 | 
         
            +
                                  part of the diffusion process.
         
     | 
| 96 | 
         
            +
                :param max_beta: the maximum beta to use; use values lower than 1 to
         
     | 
| 97 | 
         
            +
                                 prevent singularities.
         
     | 
| 98 | 
         
            +
                """
         
     | 
| 99 | 
         
            +
                betas = []
         
     | 
| 100 | 
         
            +
                for i in range(num_diffusion_timesteps):
         
     | 
| 101 | 
         
            +
                    t1 = i / num_diffusion_timesteps
         
     | 
| 102 | 
         
            +
                    t2 = (i + 1) / num_diffusion_timesteps
         
     | 
| 103 | 
         
            +
                    betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
         
     | 
| 104 | 
         
            +
                return np.array(betas)
         
     | 
    	
        lvdm/modules/__pycache__/attention.cpython-39.pyc
    ADDED
    
    | 
         Binary file (15 kB). View file 
     | 
| 
         | 
    	
        lvdm/modules/attention.py
    ADDED
    
    | 
         @@ -0,0 +1,514 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            from torch import nn, einsum
         
     | 
| 3 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 4 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 5 | 
         
            +
            from functools import partial
         
     | 
| 6 | 
         
            +
            try:
         
     | 
| 7 | 
         
            +
                import xformers
         
     | 
| 8 | 
         
            +
                import xformers.ops
         
     | 
| 9 | 
         
            +
                XFORMERS_IS_AVAILBLE = True
         
     | 
| 10 | 
         
            +
            except:
         
     | 
| 11 | 
         
            +
                XFORMERS_IS_AVAILBLE = False
         
     | 
| 12 | 
         
            +
            from lvdm.common import (
         
     | 
| 13 | 
         
            +
                checkpoint,
         
     | 
| 14 | 
         
            +
                exists,
         
     | 
| 15 | 
         
            +
                default,
         
     | 
| 16 | 
         
            +
            )
         
     | 
| 17 | 
         
            +
            from lvdm.basics import zero_module
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class RelativePosition(nn.Module):
         
     | 
| 21 | 
         
            +
                """ https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py """
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                def __init__(self, num_units, max_relative_position):
         
     | 
| 24 | 
         
            +
                    super().__init__()
         
     | 
| 25 | 
         
            +
                    self.num_units = num_units
         
     | 
| 26 | 
         
            +
                    self.max_relative_position = max_relative_position
         
     | 
| 27 | 
         
            +
                    self.embeddings_table = nn.Parameter(torch.Tensor(max_relative_position * 2 + 1, num_units))
         
     | 
| 28 | 
         
            +
                    nn.init.xavier_uniform_(self.embeddings_table)
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                def forward(self, length_q, length_k):
         
     | 
| 31 | 
         
            +
                    device = self.embeddings_table.device
         
     | 
| 32 | 
         
            +
                    range_vec_q = torch.arange(length_q, device=device)
         
     | 
| 33 | 
         
            +
                    range_vec_k = torch.arange(length_k, device=device)
         
     | 
| 34 | 
         
            +
                    distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
         
     | 
| 35 | 
         
            +
                    distance_mat_clipped = torch.clamp(distance_mat, -self.max_relative_position, self.max_relative_position)
         
     | 
| 36 | 
         
            +
                    final_mat = distance_mat_clipped + self.max_relative_position
         
     | 
| 37 | 
         
            +
                    final_mat = final_mat.long()
         
     | 
| 38 | 
         
            +
                    embeddings = self.embeddings_table[final_mat]
         
     | 
| 39 | 
         
            +
                    return embeddings
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            class CrossAttention(nn.Module):
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., 
         
     | 
| 45 | 
         
            +
                             relative_position=False, temporal_length=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77):
         
     | 
| 46 | 
         
            +
                    super().__init__()
         
     | 
| 47 | 
         
            +
                    inner_dim = dim_head * heads
         
     | 
| 48 | 
         
            +
                    context_dim = default(context_dim, query_dim)
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                    self.scale = dim_head**-0.5
         
     | 
| 51 | 
         
            +
                    self.heads = heads
         
     | 
| 52 | 
         
            +
                    self.dim_head = dim_head
         
     | 
| 53 | 
         
            +
                    self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
         
     | 
| 54 | 
         
            +
                    self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 55 | 
         
            +
                    self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
         
     | 
| 58 | 
         
            +
                    
         
     | 
| 59 | 
         
            +
                    self.relative_position = relative_position
         
     | 
| 60 | 
         
            +
                    if self.relative_position:
         
     | 
| 61 | 
         
            +
                        assert(temporal_length is not None)
         
     | 
| 62 | 
         
            +
                        self.relative_position_k = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
         
     | 
| 63 | 
         
            +
                        self.relative_position_v = RelativePosition(num_units=dim_head, max_relative_position=temporal_length)
         
     | 
| 64 | 
         
            +
                    else:
         
     | 
| 65 | 
         
            +
                        ## only used for spatial attention, while NOT for temporal attention
         
     | 
| 66 | 
         
            +
                        if XFORMERS_IS_AVAILBLE and temporal_length is None:
         
     | 
| 67 | 
         
            +
                            self.forward = self.efficient_forward
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    self.video_length = video_length
         
     | 
| 70 | 
         
            +
                    self.image_cross_attention = image_cross_attention
         
     | 
| 71 | 
         
            +
                    self.image_cross_attention_scale = image_cross_attention_scale
         
     | 
| 72 | 
         
            +
                    self.text_context_len = text_context_len
         
     | 
| 73 | 
         
            +
                    self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
         
     | 
| 74 | 
         
            +
                    if self.image_cross_attention:
         
     | 
| 75 | 
         
            +
                        self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 76 | 
         
            +
                        self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
         
     | 
| 77 | 
         
            +
                        if image_cross_attention_scale_learnable:
         
     | 
| 78 | 
         
            +
                            self.register_parameter('alpha', nn.Parameter(torch.tensor(0.)) )
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                def forward(self, x, context=None, mask=None):
         
     | 
| 82 | 
         
            +
                    spatial_self_attn = (context is None)
         
     | 
| 83 | 
         
            +
                    k_ip, v_ip, out_ip = None, None, None
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    h = self.heads
         
     | 
| 86 | 
         
            +
                    q = self.to_q(x)
         
     | 
| 87 | 
         
            +
                    context = default(context, x)
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    if self.image_cross_attention and not spatial_self_attn:
         
     | 
| 90 | 
         
            +
                        context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
         
     | 
| 91 | 
         
            +
                        k = self.to_k(context)
         
     | 
| 92 | 
         
            +
                        v = self.to_v(context)
         
     | 
| 93 | 
         
            +
                        k_ip = self.to_k_ip(context_image)
         
     | 
| 94 | 
         
            +
                        v_ip = self.to_v_ip(context_image)
         
     | 
| 95 | 
         
            +
                    else:
         
     | 
| 96 | 
         
            +
                        if not spatial_self_attn:
         
     | 
| 97 | 
         
            +
                            context = context[:,:self.text_context_len,:]
         
     | 
| 98 | 
         
            +
                        k = self.to_k(context)
         
     | 
| 99 | 
         
            +
                        v = self.to_v(context)
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                    sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
         
     | 
| 104 | 
         
            +
                    if self.relative_position:
         
     | 
| 105 | 
         
            +
                        len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
         
     | 
| 106 | 
         
            +
                        k2 = self.relative_position_k(len_q, len_k)
         
     | 
| 107 | 
         
            +
                        sim2 = einsum('b t d, t s d -> b t s', q, k2) * self.scale # TODO check 
         
     | 
| 108 | 
         
            +
                        sim += sim2
         
     | 
| 109 | 
         
            +
                    del k
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                    if exists(mask):
         
     | 
| 112 | 
         
            +
                        ## feasible for causal attention mask only
         
     | 
| 113 | 
         
            +
                        max_neg_value = -torch.finfo(sim.dtype).max
         
     | 
| 114 | 
         
            +
                        mask = repeat(mask, 'b i j -> (b h) i j', h=h)
         
     | 
| 115 | 
         
            +
                        sim.masked_fill_(~(mask>0.5), max_neg_value)
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
                    # attention, what we cannot get enough of
         
     | 
| 118 | 
         
            +
                    sim = sim.softmax(dim=-1)
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                    out = torch.einsum('b i j, b j d -> b i d', sim, v)
         
     | 
| 121 | 
         
            +
                    if self.relative_position:
         
     | 
| 122 | 
         
            +
                        v2 = self.relative_position_v(len_q, len_v)
         
     | 
| 123 | 
         
            +
                        out2 = einsum('b t s, t s d -> b t d', sim, v2) # TODO check
         
     | 
| 124 | 
         
            +
                        out += out2
         
     | 
| 125 | 
         
            +
                    out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
         
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                    ## for image cross-attention
         
     | 
| 129 | 
         
            +
                    if k_ip is not None:
         
     | 
| 130 | 
         
            +
                        k_ip, v_ip = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (k_ip, v_ip))
         
     | 
| 131 | 
         
            +
                        sim_ip =  torch.einsum('b i d, b j d -> b i j', q, k_ip) * self.scale
         
     | 
| 132 | 
         
            +
                        del k_ip
         
     | 
| 133 | 
         
            +
                        sim_ip = sim_ip.softmax(dim=-1)
         
     | 
| 134 | 
         
            +
                        out_ip = torch.einsum('b i j, b j d -> b i d', sim_ip, v_ip)
         
     | 
| 135 | 
         
            +
                        out_ip = rearrange(out_ip, '(b h) n d -> b n (h d)', h=h)
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                    if out_ip is not None:
         
     | 
| 139 | 
         
            +
                        if self.image_cross_attention_scale_learnable:
         
     | 
| 140 | 
         
            +
                            out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1)
         
     | 
| 141 | 
         
            +
                        else:
         
     | 
| 142 | 
         
            +
                            out = out + self.image_cross_attention_scale * out_ip
         
     | 
| 143 | 
         
            +
                    
         
     | 
| 144 | 
         
            +
                    return self.to_out(out)
         
     | 
| 145 | 
         
            +
                
         
     | 
| 146 | 
         
            +
                def efficient_forward(self, x, context=None, mask=None):
         
     | 
| 147 | 
         
            +
                    spatial_self_attn = (context is None)
         
     | 
| 148 | 
         
            +
                    k_ip, v_ip, out_ip = None, None, None
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                    q = self.to_q(x)
         
     | 
| 151 | 
         
            +
                    context = default(context, x)
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                    if self.image_cross_attention and not spatial_self_attn:
         
     | 
| 154 | 
         
            +
                        context, context_image = context[:,:self.text_context_len,:], context[:,self.text_context_len:,:]
         
     | 
| 155 | 
         
            +
                        k = self.to_k(context)
         
     | 
| 156 | 
         
            +
                        v = self.to_v(context)
         
     | 
| 157 | 
         
            +
                        k_ip = self.to_k_ip(context_image)
         
     | 
| 158 | 
         
            +
                        v_ip = self.to_v_ip(context_image)
         
     | 
| 159 | 
         
            +
                    else:
         
     | 
| 160 | 
         
            +
                        if not spatial_self_attn:
         
     | 
| 161 | 
         
            +
                            context = context[:,:self.text_context_len,:]
         
     | 
| 162 | 
         
            +
                        k = self.to_k(context)
         
     | 
| 163 | 
         
            +
                        v = self.to_v(context)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    b, _, _ = q.shape
         
     | 
| 166 | 
         
            +
                    q, k, v = map(
         
     | 
| 167 | 
         
            +
                        lambda t: t.unsqueeze(3)
         
     | 
| 168 | 
         
            +
                        .reshape(b, t.shape[1], self.heads, self.dim_head)
         
     | 
| 169 | 
         
            +
                        .permute(0, 2, 1, 3)
         
     | 
| 170 | 
         
            +
                        .reshape(b * self.heads, t.shape[1], self.dim_head)
         
     | 
| 171 | 
         
            +
                        .contiguous(),
         
     | 
| 172 | 
         
            +
                        (q, k, v),
         
     | 
| 173 | 
         
            +
                    )
         
     | 
| 174 | 
         
            +
                    # actually compute the attention, what we cannot get enough of
         
     | 
| 175 | 
         
            +
                    out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
         
     | 
| 176 | 
         
            +
                    
         
     | 
| 177 | 
         
            +
                    ## for image cross-attention
         
     | 
| 178 | 
         
            +
                    if k_ip is not None:
         
     | 
| 179 | 
         
            +
                        k_ip, v_ip = map(
         
     | 
| 180 | 
         
            +
                            lambda t: t.unsqueeze(3)
         
     | 
| 181 | 
         
            +
                            .reshape(b, t.shape[1], self.heads, self.dim_head)
         
     | 
| 182 | 
         
            +
                            .permute(0, 2, 1, 3)
         
     | 
| 183 | 
         
            +
                            .reshape(b * self.heads, t.shape[1], self.dim_head)
         
     | 
| 184 | 
         
            +
                            .contiguous(),
         
     | 
| 185 | 
         
            +
                            (k_ip, v_ip),
         
     | 
| 186 | 
         
            +
                        )
         
     | 
| 187 | 
         
            +
                        out_ip = xformers.ops.memory_efficient_attention(q, k_ip, v_ip, attn_bias=None, op=None)
         
     | 
| 188 | 
         
            +
                        out_ip = (
         
     | 
| 189 | 
         
            +
                            out_ip.unsqueeze(0)
         
     | 
| 190 | 
         
            +
                            .reshape(b, self.heads, out.shape[1], self.dim_head)
         
     | 
| 191 | 
         
            +
                            .permute(0, 2, 1, 3)
         
     | 
| 192 | 
         
            +
                            .reshape(b, out.shape[1], self.heads * self.dim_head)
         
     | 
| 193 | 
         
            +
                        )
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                    if exists(mask):
         
     | 
| 196 | 
         
            +
                        raise NotImplementedError
         
     | 
| 197 | 
         
            +
                    out = (
         
     | 
| 198 | 
         
            +
                        out.unsqueeze(0)
         
     | 
| 199 | 
         
            +
                        .reshape(b, self.heads, out.shape[1], self.dim_head)
         
     | 
| 200 | 
         
            +
                        .permute(0, 2, 1, 3)
         
     | 
| 201 | 
         
            +
                        .reshape(b, out.shape[1], self.heads * self.dim_head)
         
     | 
| 202 | 
         
            +
                    )
         
     | 
| 203 | 
         
            +
                    if out_ip is not None:
         
     | 
| 204 | 
         
            +
                        if self.image_cross_attention_scale_learnable:
         
     | 
| 205 | 
         
            +
                            out = out + self.image_cross_attention_scale * out_ip * (torch.tanh(self.alpha)+1)
         
     | 
| 206 | 
         
            +
                        else:
         
     | 
| 207 | 
         
            +
                            out = out + self.image_cross_attention_scale * out_ip
         
     | 
| 208 | 
         
            +
                       
         
     | 
| 209 | 
         
            +
                    return self.to_out(out)
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
            class BasicTransformerBlock(nn.Module):
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                def __init__(self, dim, n_heads, d_head, dropout=0., context_dim=None, gated_ff=True, checkpoint=True,
         
     | 
| 215 | 
         
            +
                            disable_self_attn=False, attention_cls=None, video_length=None, image_cross_attention=False, image_cross_attention_scale=1.0, image_cross_attention_scale_learnable=False, text_context_len=77):
         
     | 
| 216 | 
         
            +
                    super().__init__()
         
     | 
| 217 | 
         
            +
                    attn_cls = CrossAttention if attention_cls is None else attention_cls
         
     | 
| 218 | 
         
            +
                    self.disable_self_attn = disable_self_attn
         
     | 
| 219 | 
         
            +
                    self.attn1 = attn_cls(query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout,
         
     | 
| 220 | 
         
            +
                        context_dim=context_dim if self.disable_self_attn else None)
         
     | 
| 221 | 
         
            +
                    self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
         
     | 
| 222 | 
         
            +
                    self.attn2 = attn_cls(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout, video_length=video_length, image_cross_attention=image_cross_attention, image_cross_attention_scale=image_cross_attention_scale, image_cross_attention_scale_learnable=image_cross_attention_scale_learnable,text_context_len=text_context_len)
         
     | 
| 223 | 
         
            +
                    self.image_cross_attention = image_cross_attention
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    self.norm1 = nn.LayerNorm(dim)
         
     | 
| 226 | 
         
            +
                    self.norm2 = nn.LayerNorm(dim)
         
     | 
| 227 | 
         
            +
                    self.norm3 = nn.LayerNorm(dim)
         
     | 
| 228 | 
         
            +
                    self.checkpoint = checkpoint
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                def forward(self, x, context=None, mask=None, **kwargs):
         
     | 
| 232 | 
         
            +
                    ## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
         
     | 
| 233 | 
         
            +
                    input_tuple = (x,)      ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
         
     | 
| 234 | 
         
            +
                    if context is not None:
         
     | 
| 235 | 
         
            +
                        input_tuple = (x, context)
         
     | 
| 236 | 
         
            +
                    if mask is not None:
         
     | 
| 237 | 
         
            +
                        forward_mask = partial(self._forward, mask=mask)
         
     | 
| 238 | 
         
            +
                        return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
         
     | 
| 239 | 
         
            +
                    return checkpoint(self._forward, input_tuple, self.parameters(), self.checkpoint)
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                def _forward(self, x, context=None, mask=None):
         
     | 
| 243 | 
         
            +
                    x = self.attn1(self.norm1(x), context=context if self.disable_self_attn else None, mask=mask) + x
         
     | 
| 244 | 
         
            +
                    x = self.attn2(self.norm2(x), context=context, mask=mask) + x
         
     | 
| 245 | 
         
            +
                    x = self.ff(self.norm3(x)) + x
         
     | 
| 246 | 
         
            +
                    return x
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
            class SpatialTransformer(nn.Module):
         
     | 
| 250 | 
         
            +
                """
         
     | 
| 251 | 
         
            +
                Transformer block for image-like data in spatial axis.
         
     | 
| 252 | 
         
            +
                First, project the input (aka embedding)
         
     | 
| 253 | 
         
            +
                and reshape to b, t, d.
         
     | 
| 254 | 
         
            +
                Then apply standard transformer action.
         
     | 
| 255 | 
         
            +
                Finally, reshape to image
         
     | 
| 256 | 
         
            +
                NEW: use_linear for more efficiency instead of the 1x1 convs
         
     | 
| 257 | 
         
            +
                """
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
         
     | 
| 260 | 
         
            +
                             use_checkpoint=True, disable_self_attn=False, use_linear=False, video_length=None,
         
     | 
| 261 | 
         
            +
                             image_cross_attention=False, image_cross_attention_scale_learnable=False):
         
     | 
| 262 | 
         
            +
                    super().__init__()
         
     | 
| 263 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 264 | 
         
            +
                    inner_dim = n_heads * d_head
         
     | 
| 265 | 
         
            +
                    self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 266 | 
         
            +
                    if not use_linear:
         
     | 
| 267 | 
         
            +
                        self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         
     | 
| 268 | 
         
            +
                    else:
         
     | 
| 269 | 
         
            +
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                    attention_cls = None
         
     | 
| 272 | 
         
            +
                    self.transformer_blocks = nn.ModuleList([
         
     | 
| 273 | 
         
            +
                        BasicTransformerBlock(
         
     | 
| 274 | 
         
            +
                            inner_dim,
         
     | 
| 275 | 
         
            +
                            n_heads,
         
     | 
| 276 | 
         
            +
                            d_head,
         
     | 
| 277 | 
         
            +
                            dropout=dropout,
         
     | 
| 278 | 
         
            +
                            context_dim=context_dim,
         
     | 
| 279 | 
         
            +
                            disable_self_attn=disable_self_attn,
         
     | 
| 280 | 
         
            +
                            checkpoint=use_checkpoint,
         
     | 
| 281 | 
         
            +
                            attention_cls=attention_cls,
         
     | 
| 282 | 
         
            +
                            video_length=video_length,
         
     | 
| 283 | 
         
            +
                            image_cross_attention=image_cross_attention,
         
     | 
| 284 | 
         
            +
                            image_cross_attention_scale_learnable=image_cross_attention_scale_learnable,
         
     | 
| 285 | 
         
            +
                            ) for d in range(depth)
         
     | 
| 286 | 
         
            +
                    ])
         
     | 
| 287 | 
         
            +
                    if not use_linear:
         
     | 
| 288 | 
         
            +
                        self.proj_out = zero_module(nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
         
     | 
| 289 | 
         
            +
                    else:
         
     | 
| 290 | 
         
            +
                        self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
         
     | 
| 291 | 
         
            +
                    self.use_linear = use_linear
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                def forward(self, x, context=None, **kwargs):
         
     | 
| 295 | 
         
            +
                    b, c, h, w = x.shape
         
     | 
| 296 | 
         
            +
                    x_in = x
         
     | 
| 297 | 
         
            +
                    x = self.norm(x)
         
     | 
| 298 | 
         
            +
                    if not self.use_linear:
         
     | 
| 299 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 300 | 
         
            +
                    x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
         
     | 
| 301 | 
         
            +
                    if self.use_linear:
         
     | 
| 302 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 303 | 
         
            +
                    for i, block in enumerate(self.transformer_blocks):
         
     | 
| 304 | 
         
            +
                        x = block(x, context=context, **kwargs)
         
     | 
| 305 | 
         
            +
                    if self.use_linear:
         
     | 
| 306 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 307 | 
         
            +
                    x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
         
     | 
| 308 | 
         
            +
                    if not self.use_linear:
         
     | 
| 309 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 310 | 
         
            +
                    return x + x_in
         
     | 
| 311 | 
         
            +
                
         
     | 
| 312 | 
         
            +
                
         
     | 
| 313 | 
         
            +
            class TemporalTransformer(nn.Module):
         
     | 
| 314 | 
         
            +
                """
         
     | 
| 315 | 
         
            +
                Transformer block for image-like data in temporal axis.
         
     | 
| 316 | 
         
            +
                First, reshape to b, t, d.
         
     | 
| 317 | 
         
            +
                Then apply standard transformer action.
         
     | 
| 318 | 
         
            +
                Finally, reshape to image
         
     | 
| 319 | 
         
            +
                """
         
     | 
| 320 | 
         
            +
                def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0., context_dim=None,
         
     | 
| 321 | 
         
            +
                             use_checkpoint=True, use_linear=False, only_self_att=True, causal_attention=False, causal_block_size=1,
         
     | 
| 322 | 
         
            +
                             relative_position=False, temporal_length=None):
         
     | 
| 323 | 
         
            +
                    super().__init__()
         
     | 
| 324 | 
         
            +
                    self.only_self_att = only_self_att
         
     | 
| 325 | 
         
            +
                    self.relative_position = relative_position
         
     | 
| 326 | 
         
            +
                    self.causal_attention = causal_attention
         
     | 
| 327 | 
         
            +
                    self.causal_block_size = causal_block_size
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 330 | 
         
            +
                    inner_dim = n_heads * d_head
         
     | 
| 331 | 
         
            +
                    self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 332 | 
         
            +
                    self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         
     | 
| 333 | 
         
            +
                    if not use_linear:
         
     | 
| 334 | 
         
            +
                        self.proj_in = nn.Conv1d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
         
     | 
| 335 | 
         
            +
                    else:
         
     | 
| 336 | 
         
            +
                        self.proj_in = nn.Linear(in_channels, inner_dim)
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                    if relative_position:
         
     | 
| 339 | 
         
            +
                        assert(temporal_length is not None)
         
     | 
| 340 | 
         
            +
                        attention_cls = partial(CrossAttention, relative_position=True, temporal_length=temporal_length)
         
     | 
| 341 | 
         
            +
                    else:
         
     | 
| 342 | 
         
            +
                        attention_cls = partial(CrossAttention, temporal_length=temporal_length)
         
     | 
| 343 | 
         
            +
                    if self.causal_attention:
         
     | 
| 344 | 
         
            +
                        assert(temporal_length is not None)
         
     | 
| 345 | 
         
            +
                        self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    if self.only_self_att:
         
     | 
| 348 | 
         
            +
                        context_dim = None
         
     | 
| 349 | 
         
            +
                    self.transformer_blocks = nn.ModuleList([
         
     | 
| 350 | 
         
            +
                        BasicTransformerBlock(
         
     | 
| 351 | 
         
            +
                            inner_dim,
         
     | 
| 352 | 
         
            +
                            n_heads,
         
     | 
| 353 | 
         
            +
                            d_head,
         
     | 
| 354 | 
         
            +
                            dropout=dropout,
         
     | 
| 355 | 
         
            +
                            context_dim=context_dim,
         
     | 
| 356 | 
         
            +
                            attention_cls=attention_cls,
         
     | 
| 357 | 
         
            +
                            checkpoint=use_checkpoint) for d in range(depth)
         
     | 
| 358 | 
         
            +
                    ])
         
     | 
| 359 | 
         
            +
                    if not use_linear:
         
     | 
| 360 | 
         
            +
                        self.proj_out = zero_module(nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0))
         
     | 
| 361 | 
         
            +
                    else:
         
     | 
| 362 | 
         
            +
                        self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
         
     | 
| 363 | 
         
            +
                    self.use_linear = use_linear
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                def forward(self, x, context=None):
         
     | 
| 366 | 
         
            +
                    b, c, t, h, w = x.shape
         
     | 
| 367 | 
         
            +
                    x_in = x
         
     | 
| 368 | 
         
            +
                    x = self.norm(x)
         
     | 
| 369 | 
         
            +
                    x = rearrange(x, 'b c t h w -> (b h w) c t').contiguous()
         
     | 
| 370 | 
         
            +
                    if not self.use_linear:
         
     | 
| 371 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 372 | 
         
            +
                    x = rearrange(x, 'bhw c t -> bhw t c').contiguous()
         
     | 
| 373 | 
         
            +
                    if self.use_linear:
         
     | 
| 374 | 
         
            +
                        x = self.proj_in(x)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    temp_mask = None
         
     | 
| 377 | 
         
            +
                    if self.causal_attention:
         
     | 
| 378 | 
         
            +
                        # slice the from mask map
         
     | 
| 379 | 
         
            +
                        temp_mask = self.mask[:,:t,:t].to(x.device)
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                    if temp_mask is not None:
         
     | 
| 382 | 
         
            +
                        mask = temp_mask.to(x.device)
         
     | 
| 383 | 
         
            +
                        mask = repeat(mask, 'l i j -> (l bhw) i j', bhw=b*h*w)
         
     | 
| 384 | 
         
            +
                    else:
         
     | 
| 385 | 
         
            +
                        mask = None
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                    if self.only_self_att:
         
     | 
| 388 | 
         
            +
                        ## note: if no context is given, cross-attention defaults to self-attention
         
     | 
| 389 | 
         
            +
                        for i, block in enumerate(self.transformer_blocks):
         
     | 
| 390 | 
         
            +
                            x = block(x, mask=mask)
         
     | 
| 391 | 
         
            +
                        x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
         
     | 
| 392 | 
         
            +
                    else:
         
     | 
| 393 | 
         
            +
                        x = rearrange(x, '(b hw) t c -> b hw t c', b=b).contiguous()
         
     | 
| 394 | 
         
            +
                        context = rearrange(context, '(b t) l con -> b t l con', t=t).contiguous()
         
     | 
| 395 | 
         
            +
                        for i, block in enumerate(self.transformer_blocks):
         
     | 
| 396 | 
         
            +
                            # calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
         
     | 
| 397 | 
         
            +
                            for j in range(b):
         
     | 
| 398 | 
         
            +
                                context_j = repeat(
         
     | 
| 399 | 
         
            +
                                    context[j],
         
     | 
| 400 | 
         
            +
                                    't l con -> (t r) l con', r=(h * w) // t, t=t).contiguous()
         
     | 
| 401 | 
         
            +
                                ## note: causal mask will not applied in cross-attention case
         
     | 
| 402 | 
         
            +
                                x[j] = block(x[j], context=context_j)
         
     | 
| 403 | 
         
            +
                    
         
     | 
| 404 | 
         
            +
                    if self.use_linear:
         
     | 
| 405 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 406 | 
         
            +
                        x = rearrange(x, 'b (h w) t c -> b c t h w', h=h, w=w).contiguous()
         
     | 
| 407 | 
         
            +
                    if not self.use_linear:
         
     | 
| 408 | 
         
            +
                        x = rearrange(x, 'b hw t c -> (b hw) c t').contiguous()
         
     | 
| 409 | 
         
            +
                        x = self.proj_out(x)
         
     | 
| 410 | 
         
            +
                        x = rearrange(x, '(b h w) c t -> b c t h w', b=b, h=h, w=w).contiguous()
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                    return x + x_in
         
     | 
| 413 | 
         
            +
                
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
            class GEGLU(nn.Module):
         
     | 
| 416 | 
         
            +
                def __init__(self, dim_in, dim_out):
         
     | 
| 417 | 
         
            +
                    super().__init__()
         
     | 
| 418 | 
         
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
                def forward(self, x):
         
     | 
| 421 | 
         
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         
     | 
| 422 | 
         
            +
                    return x * F.gelu(gate)
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
            class FeedForward(nn.Module):
         
     | 
| 426 | 
         
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         
     | 
| 427 | 
         
            +
                    super().__init__()
         
     | 
| 428 | 
         
            +
                    inner_dim = int(dim * mult)
         
     | 
| 429 | 
         
            +
                    dim_out = default(dim_out, dim)
         
     | 
| 430 | 
         
            +
                    project_in = nn.Sequential(
         
     | 
| 431 | 
         
            +
                        nn.Linear(dim, inner_dim),
         
     | 
| 432 | 
         
            +
                        nn.GELU()
         
     | 
| 433 | 
         
            +
                    ) if not glu else GEGLU(dim, inner_dim)
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                    self.net = nn.Sequential(
         
     | 
| 436 | 
         
            +
                        project_in,
         
     | 
| 437 | 
         
            +
                        nn.Dropout(dropout),
         
     | 
| 438 | 
         
            +
                        nn.Linear(inner_dim, dim_out)
         
     | 
| 439 | 
         
            +
                    )
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                def forward(self, x):
         
     | 
| 442 | 
         
            +
                    return self.net(x)
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
            class LinearAttention(nn.Module):
         
     | 
| 446 | 
         
            +
                def __init__(self, dim, heads=4, dim_head=32):
         
     | 
| 447 | 
         
            +
                    super().__init__()
         
     | 
| 448 | 
         
            +
                    self.heads = heads
         
     | 
| 449 | 
         
            +
                    hidden_dim = dim_head * heads
         
     | 
| 450 | 
         
            +
                    self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias = False)
         
     | 
| 451 | 
         
            +
                    self.to_out = nn.Conv2d(hidden_dim, dim, 1)
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                def forward(self, x):
         
     | 
| 454 | 
         
            +
                    b, c, h, w = x.shape
         
     | 
| 455 | 
         
            +
                    qkv = self.to_qkv(x)
         
     | 
| 456 | 
         
            +
                    q, k, v = rearrange(qkv, 'b (qkv heads c) h w -> qkv b heads c (h w)', heads = self.heads, qkv=3)
         
     | 
| 457 | 
         
            +
                    k = k.softmax(dim=-1)  
         
     | 
| 458 | 
         
            +
                    context = torch.einsum('bhdn,bhen->bhde', k, v)
         
     | 
| 459 | 
         
            +
                    out = torch.einsum('bhde,bhdn->bhen', context, q)
         
     | 
| 460 | 
         
            +
                    out = rearrange(out, 'b heads c (h w) -> b (heads c) h w', heads=self.heads, h=h, w=w)
         
     | 
| 461 | 
         
            +
                    return self.to_out(out)
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
            class SpatialSelfAttention(nn.Module):
         
     | 
| 465 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 466 | 
         
            +
                    super().__init__()
         
     | 
| 467 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                    self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 470 | 
         
            +
                    self.q = torch.nn.Conv2d(in_channels,
         
     | 
| 471 | 
         
            +
                                             in_channels,
         
     | 
| 472 | 
         
            +
                                             kernel_size=1,
         
     | 
| 473 | 
         
            +
                                             stride=1,
         
     | 
| 474 | 
         
            +
                                             padding=0)
         
     | 
| 475 | 
         
            +
                    self.k = torch.nn.Conv2d(in_channels,
         
     | 
| 476 | 
         
            +
                                             in_channels,
         
     | 
| 477 | 
         
            +
                                             kernel_size=1,
         
     | 
| 478 | 
         
            +
                                             stride=1,
         
     | 
| 479 | 
         
            +
                                             padding=0)
         
     | 
| 480 | 
         
            +
                    self.v = torch.nn.Conv2d(in_channels,
         
     | 
| 481 | 
         
            +
                                             in_channels,
         
     | 
| 482 | 
         
            +
                                             kernel_size=1,
         
     | 
| 483 | 
         
            +
                                             stride=1,
         
     | 
| 484 | 
         
            +
                                             padding=0)
         
     | 
| 485 | 
         
            +
                    self.proj_out = torch.nn.Conv2d(in_channels,
         
     | 
| 486 | 
         
            +
                                                    in_channels,
         
     | 
| 487 | 
         
            +
                                                    kernel_size=1,
         
     | 
| 488 | 
         
            +
                                                    stride=1,
         
     | 
| 489 | 
         
            +
                                                    padding=0)
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                def forward(self, x):
         
     | 
| 492 | 
         
            +
                    h_ = x
         
     | 
| 493 | 
         
            +
                    h_ = self.norm(h_)
         
     | 
| 494 | 
         
            +
                    q = self.q(h_)
         
     | 
| 495 | 
         
            +
                    k = self.k(h_)
         
     | 
| 496 | 
         
            +
                    v = self.v(h_)
         
     | 
| 497 | 
         
            +
             
     | 
| 498 | 
         
            +
                    # compute attention
         
     | 
| 499 | 
         
            +
                    b,c,h,w = q.shape
         
     | 
| 500 | 
         
            +
                    q = rearrange(q, 'b c h w -> b (h w) c')
         
     | 
| 501 | 
         
            +
                    k = rearrange(k, 'b c h w -> b c (h w)')
         
     | 
| 502 | 
         
            +
                    w_ = torch.einsum('bij,bjk->bik', q, k)
         
     | 
| 503 | 
         
            +
             
     | 
| 504 | 
         
            +
                    w_ = w_ * (int(c)**(-0.5))
         
     | 
| 505 | 
         
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
                    # attend to values
         
     | 
| 508 | 
         
            +
                    v = rearrange(v, 'b c h w -> b c (h w)')
         
     | 
| 509 | 
         
            +
                    w_ = rearrange(w_, 'b i j -> b j i')
         
     | 
| 510 | 
         
            +
                    h_ = torch.einsum('bij,bjk->bik', v, w_)
         
     | 
| 511 | 
         
            +
                    h_ = rearrange(h_, 'b c (h w) -> b c h w', h=h)
         
     | 
| 512 | 
         
            +
                    h_ = self.proj_out(h_)
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    return x+h_
         
     | 
    	
        lvdm/modules/encoders/__pycache__/condition.cpython-39.pyc
    ADDED
    
    | 
         Binary file (13.7 kB). View file 
     | 
| 
         | 
    	
        lvdm/modules/encoders/__pycache__/resampler.cpython-39.pyc
    ADDED
    
    | 
         Binary file (4.07 kB). View file 
     | 
| 
         | 
    	
        lvdm/modules/encoders/condition.py
    ADDED
    
    | 
         @@ -0,0 +1,389 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import torch
         
     | 
| 2 | 
         
            +
            import torch.nn as nn
         
     | 
| 3 | 
         
            +
            import kornia
         
     | 
| 4 | 
         
            +
            import open_clip
         
     | 
| 5 | 
         
            +
            from torch.utils.checkpoint import checkpoint
         
     | 
| 6 | 
         
            +
            from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
         
     | 
| 7 | 
         
            +
            from lvdm.common import autocast
         
     | 
| 8 | 
         
            +
            from utils.utils import count_params
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            class AbstractEncoder(nn.Module):
         
     | 
| 12 | 
         
            +
                def __init__(self):
         
     | 
| 13 | 
         
            +
                    super().__init__()
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
                def encode(self, *args, **kwargs):
         
     | 
| 16 | 
         
            +
                    raise NotImplementedError
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            class IdentityEncoder(AbstractEncoder):
         
     | 
| 20 | 
         
            +
                def encode(self, x):
         
     | 
| 21 | 
         
            +
                    return x
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            class ClassEmbedder(nn.Module):
         
     | 
| 25 | 
         
            +
                def __init__(self, embed_dim, n_classes=1000, key='class', ucg_rate=0.1):
         
     | 
| 26 | 
         
            +
                    super().__init__()
         
     | 
| 27 | 
         
            +
                    self.key = key
         
     | 
| 28 | 
         
            +
                    self.embedding = nn.Embedding(n_classes, embed_dim)
         
     | 
| 29 | 
         
            +
                    self.n_classes = n_classes
         
     | 
| 30 | 
         
            +
                    self.ucg_rate = ucg_rate
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
                def forward(self, batch, key=None, disable_dropout=False):
         
     | 
| 33 | 
         
            +
                    if key is None:
         
     | 
| 34 | 
         
            +
                        key = self.key
         
     | 
| 35 | 
         
            +
                    # this is for use in crossattn
         
     | 
| 36 | 
         
            +
                    c = batch[key][:, None]
         
     | 
| 37 | 
         
            +
                    if self.ucg_rate > 0. and not disable_dropout:
         
     | 
| 38 | 
         
            +
                        mask = 1. - torch.bernoulli(torch.ones_like(c) * self.ucg_rate)
         
     | 
| 39 | 
         
            +
                        c = mask * c + (1 - mask) * torch.ones_like(c) * (self.n_classes - 1)
         
     | 
| 40 | 
         
            +
                        c = c.long()
         
     | 
| 41 | 
         
            +
                    c = self.embedding(c)
         
     | 
| 42 | 
         
            +
                    return c
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def get_unconditional_conditioning(self, bs, device="cuda"):
         
     | 
| 45 | 
         
            +
                    uc_class = self.n_classes - 1  # 1000 classes --> 0 ... 999, one extra class for ucg (class 1000)
         
     | 
| 46 | 
         
            +
                    uc = torch.ones((bs,), device=device) * uc_class
         
     | 
| 47 | 
         
            +
                    uc = {self.key: uc}
         
     | 
| 48 | 
         
            +
                    return uc
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            def disabled_train(self, mode=True):
         
     | 
| 52 | 
         
            +
                """Overwrite model.train with this function to make sure train/eval mode
         
     | 
| 53 | 
         
            +
                does not change anymore."""
         
     | 
| 54 | 
         
            +
                return self
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            class FrozenT5Embedder(AbstractEncoder):
         
     | 
| 58 | 
         
            +
                """Uses the T5 transformer encoder for text"""
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77,
         
     | 
| 61 | 
         
            +
                             freeze=True):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
         
     | 
| 62 | 
         
            +
                    super().__init__()
         
     | 
| 63 | 
         
            +
                    self.tokenizer = T5Tokenizer.from_pretrained(version)
         
     | 
| 64 | 
         
            +
                    self.transformer = T5EncoderModel.from_pretrained(version)
         
     | 
| 65 | 
         
            +
                    self.device = device
         
     | 
| 66 | 
         
            +
                    self.max_length = max_length  # TODO: typical value?
         
     | 
| 67 | 
         
            +
                    if freeze:
         
     | 
| 68 | 
         
            +
                        self.freeze()
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                def freeze(self):
         
     | 
| 71 | 
         
            +
                    self.transformer = self.transformer.eval()
         
     | 
| 72 | 
         
            +
                    # self.train = disabled_train
         
     | 
| 73 | 
         
            +
                    for param in self.parameters():
         
     | 
| 74 | 
         
            +
                        param.requires_grad = False
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                def forward(self, text):
         
     | 
| 77 | 
         
            +
                    batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
         
     | 
| 78 | 
         
            +
                                                    return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
         
     | 
| 79 | 
         
            +
                    tokens = batch_encoding["input_ids"].to(self.device)
         
     | 
| 80 | 
         
            +
                    outputs = self.transformer(input_ids=tokens)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    z = outputs.last_hidden_state
         
     | 
| 83 | 
         
            +
                    return z
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                def encode(self, text):
         
     | 
| 86 | 
         
            +
                    return self(text)
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            class FrozenCLIPEmbedder(AbstractEncoder):
         
     | 
| 90 | 
         
            +
                """Uses the CLIP transformer encoder for text (from huggingface)"""
         
     | 
| 91 | 
         
            +
                LAYERS = [
         
     | 
| 92 | 
         
            +
                    "last",
         
     | 
| 93 | 
         
            +
                    "pooled",
         
     | 
| 94 | 
         
            +
                    "hidden"
         
     | 
| 95 | 
         
            +
                ]
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77,
         
     | 
| 98 | 
         
            +
                             freeze=True, layer="last", layer_idx=None):  # clip-vit-base-patch32
         
     | 
| 99 | 
         
            +
                    super().__init__()
         
     | 
| 100 | 
         
            +
                    assert layer in self.LAYERS
         
     | 
| 101 | 
         
            +
                    self.tokenizer = CLIPTokenizer.from_pretrained(version)
         
     | 
| 102 | 
         
            +
                    self.transformer = CLIPTextModel.from_pretrained(version)
         
     | 
| 103 | 
         
            +
                    self.device = device
         
     | 
| 104 | 
         
            +
                    self.max_length = max_length
         
     | 
| 105 | 
         
            +
                    if freeze:
         
     | 
| 106 | 
         
            +
                        self.freeze()
         
     | 
| 107 | 
         
            +
                    self.layer = layer
         
     | 
| 108 | 
         
            +
                    self.layer_idx = layer_idx
         
     | 
| 109 | 
         
            +
                    if layer == "hidden":
         
     | 
| 110 | 
         
            +
                        assert layer_idx is not None
         
     | 
| 111 | 
         
            +
                        assert 0 <= abs(layer_idx) <= 12
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                def freeze(self):
         
     | 
| 114 | 
         
            +
                    self.transformer = self.transformer.eval()
         
     | 
| 115 | 
         
            +
                    # self.train = disabled_train
         
     | 
| 116 | 
         
            +
                    for param in self.parameters():
         
     | 
| 117 | 
         
            +
                        param.requires_grad = False
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                def forward(self, text):
         
     | 
| 120 | 
         
            +
                    batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
         
     | 
| 121 | 
         
            +
                                                    return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
         
     | 
| 122 | 
         
            +
                    tokens = batch_encoding["input_ids"].to(self.device)
         
     | 
| 123 | 
         
            +
                    outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer == "hidden")
         
     | 
| 124 | 
         
            +
                    if self.layer == "last":
         
     | 
| 125 | 
         
            +
                        z = outputs.last_hidden_state
         
     | 
| 126 | 
         
            +
                    elif self.layer == "pooled":
         
     | 
| 127 | 
         
            +
                        z = outputs.pooler_output[:, None, :]
         
     | 
| 128 | 
         
            +
                    else:
         
     | 
| 129 | 
         
            +
                        z = outputs.hidden_states[self.layer_idx]
         
     | 
| 130 | 
         
            +
                    return z
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                def encode(self, text):
         
     | 
| 133 | 
         
            +
                    return self(text)
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            class ClipImageEmbedder(nn.Module):
         
     | 
| 137 | 
         
            +
                def __init__(
         
     | 
| 138 | 
         
            +
                        self,
         
     | 
| 139 | 
         
            +
                        model,
         
     | 
| 140 | 
         
            +
                        jit=False,
         
     | 
| 141 | 
         
            +
                        device='cuda' if torch.cuda.is_available() else 'cpu',
         
     | 
| 142 | 
         
            +
                        antialias=True,
         
     | 
| 143 | 
         
            +
                        ucg_rate=0.
         
     | 
| 144 | 
         
            +
                ):
         
     | 
| 145 | 
         
            +
                    super().__init__()
         
     | 
| 146 | 
         
            +
                    from clip import load as load_clip
         
     | 
| 147 | 
         
            +
                    self.model, _ = load_clip(name=model, device=device, jit=jit)
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                    self.antialias = antialias
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
         
     | 
| 152 | 
         
            +
                    self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
         
     | 
| 153 | 
         
            +
                    self.ucg_rate = ucg_rate
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                def preprocess(self, x):
         
     | 
| 156 | 
         
            +
                    # normalize to [0,1]
         
     | 
| 157 | 
         
            +
                    x = kornia.geometry.resize(x, (224, 224),
         
     | 
| 158 | 
         
            +
                                               interpolation='bicubic', align_corners=True,
         
     | 
| 159 | 
         
            +
                                               antialias=self.antialias)
         
     | 
| 160 | 
         
            +
                    x = (x + 1.) / 2.
         
     | 
| 161 | 
         
            +
                    # re-normalize according to clip
         
     | 
| 162 | 
         
            +
                    x = kornia.enhance.normalize(x, self.mean, self.std)
         
     | 
| 163 | 
         
            +
                    return x
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                def forward(self, x, no_dropout=False):
         
     | 
| 166 | 
         
            +
                    # x is assumed to be in range [-1,1]
         
     | 
| 167 | 
         
            +
                    out = self.model.encode_image(self.preprocess(x))
         
     | 
| 168 | 
         
            +
                    out = out.to(x.dtype)
         
     | 
| 169 | 
         
            +
                    if self.ucg_rate > 0. and not no_dropout:
         
     | 
| 170 | 
         
            +
                        out = torch.bernoulli((1. - self.ucg_rate) * torch.ones(out.shape[0], device=out.device))[:, None] * out
         
     | 
| 171 | 
         
            +
                    return out
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
            class FrozenOpenCLIPEmbedder(AbstractEncoder):
         
     | 
| 175 | 
         
            +
                """
         
     | 
| 176 | 
         
            +
                Uses the OpenCLIP transformer encoder for text
         
     | 
| 177 | 
         
            +
                """
         
     | 
| 178 | 
         
            +
                LAYERS = [
         
     | 
| 179 | 
         
            +
                    # "pooled",
         
     | 
| 180 | 
         
            +
                    "last",
         
     | 
| 181 | 
         
            +
                    "penultimate"
         
     | 
| 182 | 
         
            +
                ]
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
         
     | 
| 185 | 
         
            +
                             freeze=True, layer="last"):
         
     | 
| 186 | 
         
            +
                    super().__init__()
         
     | 
| 187 | 
         
            +
                    assert layer in self.LAYERS
         
     | 
| 188 | 
         
            +
                    model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'), pretrained=version)
         
     | 
| 189 | 
         
            +
                    del model.visual
         
     | 
| 190 | 
         
            +
                    self.model = model
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                    self.device = device
         
     | 
| 193 | 
         
            +
                    self.max_length = max_length
         
     | 
| 194 | 
         
            +
                    if freeze:
         
     | 
| 195 | 
         
            +
                        self.freeze()
         
     | 
| 196 | 
         
            +
                    self.layer = layer
         
     | 
| 197 | 
         
            +
                    if self.layer == "last":
         
     | 
| 198 | 
         
            +
                        self.layer_idx = 0
         
     | 
| 199 | 
         
            +
                    elif self.layer == "penultimate":
         
     | 
| 200 | 
         
            +
                        self.layer_idx = 1
         
     | 
| 201 | 
         
            +
                    else:
         
     | 
| 202 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                def freeze(self):
         
     | 
| 205 | 
         
            +
                    self.model = self.model.eval()
         
     | 
| 206 | 
         
            +
                    for param in self.parameters():
         
     | 
| 207 | 
         
            +
                        param.requires_grad = False
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                def forward(self, text):
         
     | 
| 210 | 
         
            +
                    tokens = open_clip.tokenize(text) ## all clip models use 77 as context length
         
     | 
| 211 | 
         
            +
                    z = self.encode_with_transformer(tokens.to(self.device))
         
     | 
| 212 | 
         
            +
                    return z
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                def encode_with_transformer(self, text):
         
     | 
| 215 | 
         
            +
                    x = self.model.token_embedding(text)  # [batch_size, n_ctx, d_model]
         
     | 
| 216 | 
         
            +
                    x = x + self.model.positional_embedding
         
     | 
| 217 | 
         
            +
                    x = x.permute(1, 0, 2)  # NLD -> LND
         
     | 
| 218 | 
         
            +
                    x = self.text_transformer_forward(x, attn_mask=self.model.attn_mask)
         
     | 
| 219 | 
         
            +
                    x = x.permute(1, 0, 2)  # LND -> NLD
         
     | 
| 220 | 
         
            +
                    x = self.model.ln_final(x)
         
     | 
| 221 | 
         
            +
                    return x
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                def text_transformer_forward(self, x: torch.Tensor, attn_mask=None):
         
     | 
| 224 | 
         
            +
                    for i, r in enumerate(self.model.transformer.resblocks):
         
     | 
| 225 | 
         
            +
                        if i == len(self.model.transformer.resblocks) - self.layer_idx:
         
     | 
| 226 | 
         
            +
                            break
         
     | 
| 227 | 
         
            +
                        if self.model.transformer.grad_checkpointing and not torch.jit.is_scripting():
         
     | 
| 228 | 
         
            +
                            x = checkpoint(r, x, attn_mask)
         
     | 
| 229 | 
         
            +
                        else:
         
     | 
| 230 | 
         
            +
                            x = r(x, attn_mask=attn_mask)
         
     | 
| 231 | 
         
            +
                    return x
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                def encode(self, text):
         
     | 
| 234 | 
         
            +
                    return self(text)
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
            class FrozenOpenCLIPImageEmbedder(AbstractEncoder):
         
     | 
| 238 | 
         
            +
                """
         
     | 
| 239 | 
         
            +
                Uses the OpenCLIP vision transformer encoder for images
         
     | 
| 240 | 
         
            +
                """
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda", max_length=77,
         
     | 
| 243 | 
         
            +
                             freeze=True, layer="pooled", antialias=True, ucg_rate=0.):
         
     | 
| 244 | 
         
            +
                    super().__init__()
         
     | 
| 245 | 
         
            +
                    model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
         
     | 
| 246 | 
         
            +
                                                                        pretrained=version, )
         
     | 
| 247 | 
         
            +
                    del model.transformer
         
     | 
| 248 | 
         
            +
                    self.model = model
         
     | 
| 249 | 
         
            +
                    # self.mapper = torch.nn.Linear(1280, 1024)
         
     | 
| 250 | 
         
            +
                    self.device = device
         
     | 
| 251 | 
         
            +
                    self.max_length = max_length
         
     | 
| 252 | 
         
            +
                    if freeze:
         
     | 
| 253 | 
         
            +
                        self.freeze()
         
     | 
| 254 | 
         
            +
                    self.layer = layer
         
     | 
| 255 | 
         
            +
                    if self.layer == "penultimate":
         
     | 
| 256 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 257 | 
         
            +
                        self.layer_idx = 1
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    self.antialias = antialias
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                    self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
         
     | 
| 262 | 
         
            +
                    self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
         
     | 
| 263 | 
         
            +
                    self.ucg_rate = ucg_rate
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                def preprocess(self, x):
         
     | 
| 266 | 
         
            +
                    # normalize to [0,1]
         
     | 
| 267 | 
         
            +
                    x = kornia.geometry.resize(x, (224, 224),
         
     | 
| 268 | 
         
            +
                                               interpolation='bicubic', align_corners=True,
         
     | 
| 269 | 
         
            +
                                               antialias=self.antialias)
         
     | 
| 270 | 
         
            +
                    x = (x + 1.) / 2.
         
     | 
| 271 | 
         
            +
                    # renormalize according to clip
         
     | 
| 272 | 
         
            +
                    x = kornia.enhance.normalize(x, self.mean, self.std)
         
     | 
| 273 | 
         
            +
                    return x
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                def freeze(self):
         
     | 
| 276 | 
         
            +
                    self.model = self.model.eval()
         
     | 
| 277 | 
         
            +
                    for param in self.model.parameters():
         
     | 
| 278 | 
         
            +
                        param.requires_grad = False
         
     | 
| 279 | 
         
            +
                
         
     | 
| 280 | 
         
            +
                @autocast
         
     | 
| 281 | 
         
            +
                def forward(self, image, no_dropout=False):
         
     | 
| 282 | 
         
            +
                    z = self.encode_with_vision_transformer(image)
         
     | 
| 283 | 
         
            +
                    if self.ucg_rate > 0. and not no_dropout:
         
     | 
| 284 | 
         
            +
                        z = torch.bernoulli((1. - self.ucg_rate) * torch.ones(z.shape[0], device=z.device))[:, None] * z
         
     | 
| 285 | 
         
            +
                    return z
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                def encode_with_vision_transformer(self, img):
         
     | 
| 288 | 
         
            +
                    img = self.preprocess(img)
         
     | 
| 289 | 
         
            +
                    x = self.model.visual(img)
         
     | 
| 290 | 
         
            +
                    return x
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                def encode(self, text):
         
     | 
| 293 | 
         
            +
                    return self(text)
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
            class FrozenOpenCLIPImageEmbedderV2(AbstractEncoder):
         
     | 
| 296 | 
         
            +
                """
         
     | 
| 297 | 
         
            +
                Uses the OpenCLIP vision transformer encoder for images
         
     | 
| 298 | 
         
            +
                """
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                def __init__(self, arch="ViT-H-14", version="laion2b_s32b_b79k", device="cuda",
         
     | 
| 301 | 
         
            +
                             freeze=True, layer="pooled", antialias=True):
         
     | 
| 302 | 
         
            +
                    super().__init__()
         
     | 
| 303 | 
         
            +
                    model, _, _ = open_clip.create_model_and_transforms(arch, device=torch.device('cpu'),
         
     | 
| 304 | 
         
            +
                                                                        pretrained=version, )
         
     | 
| 305 | 
         
            +
                    del model.transformer
         
     | 
| 306 | 
         
            +
                    self.model = model
         
     | 
| 307 | 
         
            +
                    self.device = device
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    if freeze:
         
     | 
| 310 | 
         
            +
                        self.freeze()
         
     | 
| 311 | 
         
            +
                    self.layer = layer
         
     | 
| 312 | 
         
            +
                    if self.layer == "penultimate":
         
     | 
| 313 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 314 | 
         
            +
                        self.layer_idx = 1
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                    self.antialias = antialias
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                    self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
         
     | 
| 319 | 
         
            +
                    self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
             
     | 
| 322 | 
         
            +
                def preprocess(self, x):
         
     | 
| 323 | 
         
            +
                    # normalize to [0,1]
         
     | 
| 324 | 
         
            +
                    x = kornia.geometry.resize(x, (224, 224),
         
     | 
| 325 | 
         
            +
                                               interpolation='bicubic', align_corners=True,
         
     | 
| 326 | 
         
            +
                                               antialias=self.antialias)
         
     | 
| 327 | 
         
            +
                    x = (x + 1.) / 2.
         
     | 
| 328 | 
         
            +
                    # renormalize according to clip
         
     | 
| 329 | 
         
            +
                    x = kornia.enhance.normalize(x, self.mean, self.std)
         
     | 
| 330 | 
         
            +
                    return x
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                def freeze(self):
         
     | 
| 333 | 
         
            +
                    self.model = self.model.eval()
         
     | 
| 334 | 
         
            +
                    for param in self.model.parameters():
         
     | 
| 335 | 
         
            +
                        param.requires_grad = False
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                def forward(self, image, no_dropout=False): 
         
     | 
| 338 | 
         
            +
                    ## image: b c h w
         
     | 
| 339 | 
         
            +
                    z = self.encode_with_vision_transformer(image)
         
     | 
| 340 | 
         
            +
                    return z
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                def encode_with_vision_transformer(self, x):
         
     | 
| 343 | 
         
            +
                    x = self.preprocess(x)
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                    # to patches - whether to use dual patchnorm - https://arxiv.org/abs/2302.01327v1
         
     | 
| 346 | 
         
            +
                    if self.model.visual.input_patchnorm:
         
     | 
| 347 | 
         
            +
                        # einops - rearrange(x, 'b c (h p1) (w p2) -> b (h w) (c p1 p2)')
         
     | 
| 348 | 
         
            +
                        x = x.reshape(x.shape[0], x.shape[1], self.model.visual.grid_size[0], self.model.visual.patch_size[0], self.model.visual.grid_size[1], self.model.visual.patch_size[1])
         
     | 
| 349 | 
         
            +
                        x = x.permute(0, 2, 4, 1, 3, 5)
         
     | 
| 350 | 
         
            +
                        x = x.reshape(x.shape[0], self.model.visual.grid_size[0] * self.model.visual.grid_size[1], -1)
         
     | 
| 351 | 
         
            +
                        x = self.model.visual.patchnorm_pre_ln(x)
         
     | 
| 352 | 
         
            +
                        x = self.model.visual.conv1(x)
         
     | 
| 353 | 
         
            +
                    else:
         
     | 
| 354 | 
         
            +
                        x = self.model.visual.conv1(x)  # shape = [*, width, grid, grid]
         
     | 
| 355 | 
         
            +
                        x = x.reshape(x.shape[0], x.shape[1], -1)  # shape = [*, width, grid ** 2]
         
     | 
| 356 | 
         
            +
                        x = x.permute(0, 2, 1)  # shape = [*, grid ** 2, width]
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    # class embeddings and positional embeddings
         
     | 
| 359 | 
         
            +
                    x = torch.cat(
         
     | 
| 360 | 
         
            +
                        [self.model.visual.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device),
         
     | 
| 361 | 
         
            +
                         x], dim=1)  # shape = [*, grid ** 2 + 1, width]
         
     | 
| 362 | 
         
            +
                    x = x + self.model.visual.positional_embedding.to(x.dtype)
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                    # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in
         
     | 
| 365 | 
         
            +
                    x = self.model.visual.patch_dropout(x)
         
     | 
| 366 | 
         
            +
                    x = self.model.visual.ln_pre(x)
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                    x = x.permute(1, 0, 2)  # NLD -> LND
         
     | 
| 369 | 
         
            +
                    x = self.model.visual.transformer(x)
         
     | 
| 370 | 
         
            +
                    x = x.permute(1, 0, 2)  # LND -> NLD
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    return x
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
            class FrozenCLIPT5Encoder(AbstractEncoder):
         
     | 
| 375 | 
         
            +
                def __init__(self, clip_version="openai/clip-vit-large-patch14", t5_version="google/t5-v1_1-xl", device="cuda",
         
     | 
| 376 | 
         
            +
                             clip_max_length=77, t5_max_length=77):
         
     | 
| 377 | 
         
            +
                    super().__init__()
         
     | 
| 378 | 
         
            +
                    self.clip_encoder = FrozenCLIPEmbedder(clip_version, device, max_length=clip_max_length)
         
     | 
| 379 | 
         
            +
                    self.t5_encoder = FrozenT5Embedder(t5_version, device, max_length=t5_max_length)
         
     | 
| 380 | 
         
            +
                    print(f"{self.clip_encoder.__class__.__name__} has {count_params(self.clip_encoder) * 1.e-6:.2f} M parameters, "
         
     | 
| 381 | 
         
            +
                          f"{self.t5_encoder.__class__.__name__} comes with {count_params(self.t5_encoder) * 1.e-6:.2f} M params.")
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                def encode(self, text):
         
     | 
| 384 | 
         
            +
                    return self(text)
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                def forward(self, text):
         
     | 
| 387 | 
         
            +
                    clip_z = self.clip_encoder.encode(text)
         
     | 
| 388 | 
         
            +
                    t5_z = self.t5_encoder.encode(text)
         
     | 
| 389 | 
         
            +
                    return [clip_z, t5_z]
         
     | 
    	
        lvdm/modules/encoders/resampler.py
    ADDED
    
    | 
         @@ -0,0 +1,145 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # modified from https://github.com/mlfoundations/open_flamingo/blob/main/open_flamingo/src/helpers.py
         
     | 
| 2 | 
         
            +
            # and https://github.com/lucidrains/imagen-pytorch/blob/main/imagen_pytorch/imagen_pytorch.py
         
     | 
| 3 | 
         
            +
            # and https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/resampler.py
         
     | 
| 4 | 
         
            +
            import math
         
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            import torch.nn as nn
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            class ImageProjModel(nn.Module):
         
     | 
| 10 | 
         
            +
                """Projection Model"""
         
     | 
| 11 | 
         
            +
                def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
         
     | 
| 12 | 
         
            +
                    super().__init__()        
         
     | 
| 13 | 
         
            +
                    self.cross_attention_dim = cross_attention_dim
         
     | 
| 14 | 
         
            +
                    self.clip_extra_context_tokens = clip_extra_context_tokens
         
     | 
| 15 | 
         
            +
                    self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
         
     | 
| 16 | 
         
            +
                    self.norm = nn.LayerNorm(cross_attention_dim)
         
     | 
| 17 | 
         
            +
                    
         
     | 
| 18 | 
         
            +
                def forward(self, image_embeds):
         
     | 
| 19 | 
         
            +
                    #embeds = image_embeds
         
     | 
| 20 | 
         
            +
                    embeds = image_embeds.type(list(self.proj.parameters())[0].dtype)
         
     | 
| 21 | 
         
            +
                    clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
         
     | 
| 22 | 
         
            +
                    clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
         
     | 
| 23 | 
         
            +
                    return clip_extra_context_tokens
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            # FFN
         
     | 
| 27 | 
         
            +
            def FeedForward(dim, mult=4):
         
     | 
| 28 | 
         
            +
                inner_dim = int(dim * mult)
         
     | 
| 29 | 
         
            +
                return nn.Sequential(
         
     | 
| 30 | 
         
            +
                    nn.LayerNorm(dim),
         
     | 
| 31 | 
         
            +
                    nn.Linear(dim, inner_dim, bias=False),
         
     | 
| 32 | 
         
            +
                    nn.GELU(),
         
     | 
| 33 | 
         
            +
                    nn.Linear(inner_dim, dim, bias=False),
         
     | 
| 34 | 
         
            +
                )
         
     | 
| 35 | 
         
            +
                
         
     | 
| 36 | 
         
            +
                
         
     | 
| 37 | 
         
            +
            def reshape_tensor(x, heads):
         
     | 
| 38 | 
         
            +
                bs, length, width = x.shape
         
     | 
| 39 | 
         
            +
                #(bs, length, width) --> (bs, length, n_heads, dim_per_head)
         
     | 
| 40 | 
         
            +
                x = x.view(bs, length, heads, -1)
         
     | 
| 41 | 
         
            +
                # (bs, length, n_heads, dim_per_head) --> (bs, n_heads, length, dim_per_head)
         
     | 
| 42 | 
         
            +
                x = x.transpose(1, 2)
         
     | 
| 43 | 
         
            +
                # (bs, n_heads, length, dim_per_head) --> (bs*n_heads, length, dim_per_head)
         
     | 
| 44 | 
         
            +
                x = x.reshape(bs, heads, length, -1)
         
     | 
| 45 | 
         
            +
                return x
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            class PerceiverAttention(nn.Module):
         
     | 
| 49 | 
         
            +
                def __init__(self, *, dim, dim_head=64, heads=8):
         
     | 
| 50 | 
         
            +
                    super().__init__()
         
     | 
| 51 | 
         
            +
                    self.scale = dim_head**-0.5
         
     | 
| 52 | 
         
            +
                    self.dim_head = dim_head
         
     | 
| 53 | 
         
            +
                    self.heads = heads
         
     | 
| 54 | 
         
            +
                    inner_dim = dim_head * heads
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                    self.norm1 = nn.LayerNorm(dim)
         
     | 
| 57 | 
         
            +
                    self.norm2 = nn.LayerNorm(dim)
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         
     | 
| 60 | 
         
            +
                    self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False)
         
     | 
| 61 | 
         
            +
                    self.to_out = nn.Linear(inner_dim, dim, bias=False)
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                def forward(self, x, latents):
         
     | 
| 65 | 
         
            +
                    """
         
     | 
| 66 | 
         
            +
                    Args:
         
     | 
| 67 | 
         
            +
                        x (torch.Tensor): image features
         
     | 
| 68 | 
         
            +
                            shape (b, n1, D)
         
     | 
| 69 | 
         
            +
                        latent (torch.Tensor): latent features
         
     | 
| 70 | 
         
            +
                            shape (b, n2, D)
         
     | 
| 71 | 
         
            +
                    """
         
     | 
| 72 | 
         
            +
                    x = self.norm1(x)
         
     | 
| 73 | 
         
            +
                    latents = self.norm2(latents)
         
     | 
| 74 | 
         
            +
                    
         
     | 
| 75 | 
         
            +
                    b, l, _ = latents.shape
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                    q = self.to_q(latents)
         
     | 
| 78 | 
         
            +
                    kv_input = torch.cat((x, latents), dim=-2)
         
     | 
| 79 | 
         
            +
                    k, v = self.to_kv(kv_input).chunk(2, dim=-1)
         
     | 
| 80 | 
         
            +
                    
         
     | 
| 81 | 
         
            +
                    q = reshape_tensor(q, self.heads)
         
     | 
| 82 | 
         
            +
                    k = reshape_tensor(k, self.heads)
         
     | 
| 83 | 
         
            +
                    v = reshape_tensor(v, self.heads)
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                    # attention
         
     | 
| 86 | 
         
            +
                    scale = 1 / math.sqrt(math.sqrt(self.dim_head))
         
     | 
| 87 | 
         
            +
                    weight = (q * scale) @ (k * scale).transpose(-2, -1) # More stable with f16 than dividing afterwards
         
     | 
| 88 | 
         
            +
                    weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype)
         
     | 
| 89 | 
         
            +
                    out = weight @ v
         
     | 
| 90 | 
         
            +
                    
         
     | 
| 91 | 
         
            +
                    out = out.permute(0, 2, 1, 3).reshape(b, l, -1)
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                    return self.to_out(out)
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
            class Resampler(nn.Module):
         
     | 
| 97 | 
         
            +
                def __init__(
         
     | 
| 98 | 
         
            +
                    self,
         
     | 
| 99 | 
         
            +
                    dim=1024,
         
     | 
| 100 | 
         
            +
                    depth=8,
         
     | 
| 101 | 
         
            +
                    dim_head=64,
         
     | 
| 102 | 
         
            +
                    heads=16,
         
     | 
| 103 | 
         
            +
                    num_queries=8,
         
     | 
| 104 | 
         
            +
                    embedding_dim=768,
         
     | 
| 105 | 
         
            +
                    output_dim=1024,
         
     | 
| 106 | 
         
            +
                    ff_mult=4,
         
     | 
| 107 | 
         
            +
                    video_length=None, # using frame-wise version or not
         
     | 
| 108 | 
         
            +
                ):
         
     | 
| 109 | 
         
            +
                    super().__init__()
         
     | 
| 110 | 
         
            +
                    ## queries for a single frame / image
         
     | 
| 111 | 
         
            +
                    self.num_queries = num_queries 
         
     | 
| 112 | 
         
            +
                    self.video_length = video_length
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                    ## <num_queries> queries for each frame
         
     | 
| 115 | 
         
            +
                    if video_length is not None: 
         
     | 
| 116 | 
         
            +
                        num_queries = num_queries * video_length
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                    self.latents = nn.Parameter(torch.randn(1, num_queries, dim) / dim**0.5)
         
     | 
| 119 | 
         
            +
                    self.proj_in = nn.Linear(embedding_dim, dim)
         
     | 
| 120 | 
         
            +
                    self.proj_out = nn.Linear(dim, output_dim)
         
     | 
| 121 | 
         
            +
                    self.norm_out = nn.LayerNorm(output_dim)
         
     | 
| 122 | 
         
            +
                    
         
     | 
| 123 | 
         
            +
                    self.layers = nn.ModuleList([])
         
     | 
| 124 | 
         
            +
                    for _ in range(depth):
         
     | 
| 125 | 
         
            +
                        self.layers.append(
         
     | 
| 126 | 
         
            +
                            nn.ModuleList(
         
     | 
| 127 | 
         
            +
                                [
         
     | 
| 128 | 
         
            +
                                    PerceiverAttention(dim=dim, dim_head=dim_head, heads=heads),
         
     | 
| 129 | 
         
            +
                                    FeedForward(dim=dim, mult=ff_mult),
         
     | 
| 130 | 
         
            +
                                ]
         
     | 
| 131 | 
         
            +
                            )
         
     | 
| 132 | 
         
            +
                        )
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                def forward(self, x):
         
     | 
| 135 | 
         
            +
                    latents = self.latents.repeat(x.size(0), 1, 1) ## B (T L) C
         
     | 
| 136 | 
         
            +
                    x = self.proj_in(x)
         
     | 
| 137 | 
         
            +
                    
         
     | 
| 138 | 
         
            +
                    for attn, ff in self.layers:
         
     | 
| 139 | 
         
            +
                        latents = attn(x, latents) + latents
         
     | 
| 140 | 
         
            +
                        latents = ff(latents) + latents
         
     | 
| 141 | 
         
            +
                        
         
     | 
| 142 | 
         
            +
                    latents = self.proj_out(latents)
         
     | 
| 143 | 
         
            +
                    latents = self.norm_out(latents) # B L C or B (T L) C
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                    return latents
         
     | 
    	
        lvdm/modules/networks/__pycache__/ae_modules.cpython-39.pyc
    ADDED
    
    | 
         Binary file (20.6 kB). View file 
     | 
| 
         | 
    	
        lvdm/modules/networks/__pycache__/openaimodel3d.cpython-39.pyc
    ADDED
    
    | 
         Binary file (15.2 kB). View file 
     | 
| 
         | 
    	
        lvdm/modules/networks/ae_modules.py
    ADDED
    
    | 
         @@ -0,0 +1,844 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # pytorch_diffusion + derived encoder decoder
         
     | 
| 2 | 
         
            +
            import math
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import numpy as np
         
     | 
| 5 | 
         
            +
            import torch.nn as nn
         
     | 
| 6 | 
         
            +
            from einops import rearrange
         
     | 
| 7 | 
         
            +
            from utils.utils import instantiate_from_config
         
     | 
| 8 | 
         
            +
            from lvdm.modules.attention import LinearAttention
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            def nonlinearity(x):
         
     | 
| 11 | 
         
            +
                # swish
         
     | 
| 12 | 
         
            +
                return x*torch.sigmoid(x)
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def Normalize(in_channels, num_groups=32):
         
     | 
| 16 | 
         
            +
                return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class LinAttnBlock(LinearAttention):
         
     | 
| 21 | 
         
            +
                """to match AttnBlock usage"""
         
     | 
| 22 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 23 | 
         
            +
                    super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            class AttnBlock(nn.Module):
         
     | 
| 27 | 
         
            +
                def __init__(self, in_channels):
         
     | 
| 28 | 
         
            +
                    super().__init__()
         
     | 
| 29 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                    self.norm = Normalize(in_channels)
         
     | 
| 32 | 
         
            +
                    self.q = torch.nn.Conv2d(in_channels,
         
     | 
| 33 | 
         
            +
                                             in_channels,
         
     | 
| 34 | 
         
            +
                                             kernel_size=1,
         
     | 
| 35 | 
         
            +
                                             stride=1,
         
     | 
| 36 | 
         
            +
                                             padding=0)
         
     | 
| 37 | 
         
            +
                    self.k = torch.nn.Conv2d(in_channels,
         
     | 
| 38 | 
         
            +
                                             in_channels,
         
     | 
| 39 | 
         
            +
                                             kernel_size=1,
         
     | 
| 40 | 
         
            +
                                             stride=1,
         
     | 
| 41 | 
         
            +
                                             padding=0)
         
     | 
| 42 | 
         
            +
                    self.v = torch.nn.Conv2d(in_channels,
         
     | 
| 43 | 
         
            +
                                             in_channels,
         
     | 
| 44 | 
         
            +
                                             kernel_size=1,
         
     | 
| 45 | 
         
            +
                                             stride=1,
         
     | 
| 46 | 
         
            +
                                             padding=0)
         
     | 
| 47 | 
         
            +
                    self.proj_out = torch.nn.Conv2d(in_channels,
         
     | 
| 48 | 
         
            +
                                                    in_channels,
         
     | 
| 49 | 
         
            +
                                                    kernel_size=1,
         
     | 
| 50 | 
         
            +
                                                    stride=1,
         
     | 
| 51 | 
         
            +
                                                    padding=0)
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                def forward(self, x):
         
     | 
| 54 | 
         
            +
                    h_ = x
         
     | 
| 55 | 
         
            +
                    h_ = self.norm(h_)
         
     | 
| 56 | 
         
            +
                    q = self.q(h_)
         
     | 
| 57 | 
         
            +
                    k = self.k(h_)
         
     | 
| 58 | 
         
            +
                    v = self.v(h_)
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                    # compute attention
         
     | 
| 61 | 
         
            +
                    b,c,h,w = q.shape
         
     | 
| 62 | 
         
            +
                    q = q.reshape(b,c,h*w) # bcl
         
     | 
| 63 | 
         
            +
                    q = q.permute(0,2,1)   # bcl -> blc l=hw
         
     | 
| 64 | 
         
            +
                    k = k.reshape(b,c,h*w) # bcl
         
     | 
| 65 | 
         
            +
                    
         
     | 
| 66 | 
         
            +
                    w_ = torch.bmm(q,k)    # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
         
     | 
| 67 | 
         
            +
                    w_ = w_ * (int(c)**(-0.5))
         
     | 
| 68 | 
         
            +
                    w_ = torch.nn.functional.softmax(w_, dim=2)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                    # attend to values
         
     | 
| 71 | 
         
            +
                    v = v.reshape(b,c,h*w)
         
     | 
| 72 | 
         
            +
                    w_ = w_.permute(0,2,1)   # b,hw,hw (first hw of k, second of q)
         
     | 
| 73 | 
         
            +
                    h_ = torch.bmm(v,w_)     # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
         
     | 
| 74 | 
         
            +
                    h_ = h_.reshape(b,c,h,w)
         
     | 
| 75 | 
         
            +
             
     | 
| 76 | 
         
            +
                    h_ = self.proj_out(h_)
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                    return x+h_
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            def make_attn(in_channels, attn_type="vanilla"):
         
     | 
| 81 | 
         
            +
                assert attn_type in ["vanilla", "linear", "none"], f'attn_type {attn_type} unknown'
         
     | 
| 82 | 
         
            +
                #print(f"making attention of type '{attn_type}' with {in_channels} in_channels")
         
     | 
| 83 | 
         
            +
                if attn_type == "vanilla":
         
     | 
| 84 | 
         
            +
                    return AttnBlock(in_channels)
         
     | 
| 85 | 
         
            +
                elif attn_type == "none":
         
     | 
| 86 | 
         
            +
                    return nn.Identity(in_channels)
         
     | 
| 87 | 
         
            +
                else:
         
     | 
| 88 | 
         
            +
                    return LinAttnBlock(in_channels)
         
     | 
| 89 | 
         
            +
             
         
     | 
| 90 | 
         
            +
            class Downsample(nn.Module):
         
     | 
| 91 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 92 | 
         
            +
                    super().__init__()
         
     | 
| 93 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 94 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 95 | 
         
            +
                    if self.with_conv:
         
     | 
| 96 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 97 | 
         
            +
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 98 | 
         
            +
                                                    in_channels,
         
     | 
| 99 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 100 | 
         
            +
                                                    stride=2,
         
     | 
| 101 | 
         
            +
                                                    padding=0)
         
     | 
| 102 | 
         
            +
                def forward(self, x):
         
     | 
| 103 | 
         
            +
                    if self.with_conv:
         
     | 
| 104 | 
         
            +
                        pad = (0,1,0,1)
         
     | 
| 105 | 
         
            +
                        x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
         
     | 
| 106 | 
         
            +
                        x = self.conv(x)
         
     | 
| 107 | 
         
            +
                    else:
         
     | 
| 108 | 
         
            +
                        x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
         
     | 
| 109 | 
         
            +
                    return x
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            class Upsample(nn.Module):
         
     | 
| 112 | 
         
            +
                def __init__(self, in_channels, with_conv):
         
     | 
| 113 | 
         
            +
                    super().__init__()
         
     | 
| 114 | 
         
            +
                    self.with_conv = with_conv
         
     | 
| 115 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 116 | 
         
            +
                    if self.with_conv:
         
     | 
| 117 | 
         
            +
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 118 | 
         
            +
                                                    in_channels,
         
     | 
| 119 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 120 | 
         
            +
                                                    stride=1,
         
     | 
| 121 | 
         
            +
                                                    padding=1)
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                def forward(self, x):
         
     | 
| 124 | 
         
            +
                    x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
         
     | 
| 125 | 
         
            +
                    if self.with_conv:
         
     | 
| 126 | 
         
            +
                        x = self.conv(x)
         
     | 
| 127 | 
         
            +
                    return x
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
            def get_timestep_embedding(timesteps, embedding_dim):
         
     | 
| 130 | 
         
            +
                """
         
     | 
| 131 | 
         
            +
                This matches the implementation in Denoising Diffusion Probabilistic Models:
         
     | 
| 132 | 
         
            +
                From Fairseq.
         
     | 
| 133 | 
         
            +
                Build sinusoidal embeddings.
         
     | 
| 134 | 
         
            +
                This matches the implementation in tensor2tensor, but differs slightly
         
     | 
| 135 | 
         
            +
                from the description in Section 3.5 of "Attention Is All You Need".
         
     | 
| 136 | 
         
            +
                """
         
     | 
| 137 | 
         
            +
                assert len(timesteps.shape) == 1
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                half_dim = embedding_dim // 2
         
     | 
| 140 | 
         
            +
                emb = math.log(10000) / (half_dim - 1)
         
     | 
| 141 | 
         
            +
                emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
         
     | 
| 142 | 
         
            +
                emb = emb.to(device=timesteps.device)
         
     | 
| 143 | 
         
            +
                emb = timesteps.float()[:, None] * emb[None, :]
         
     | 
| 144 | 
         
            +
                emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
         
     | 
| 145 | 
         
            +
                if embedding_dim % 2 == 1:  # zero pad
         
     | 
| 146 | 
         
            +
                    emb = torch.nn.functional.pad(emb, (0,1,0,0))
         
     | 
| 147 | 
         
            +
                return emb
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
            class ResnetBlock(nn.Module):
         
     | 
| 152 | 
         
            +
                def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
         
     | 
| 153 | 
         
            +
                             dropout, temb_channels=512):
         
     | 
| 154 | 
         
            +
                    super().__init__()
         
     | 
| 155 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 156 | 
         
            +
                    out_channels = in_channels if out_channels is None else out_channels
         
     | 
| 157 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 158 | 
         
            +
                    self.use_conv_shortcut = conv_shortcut
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                    self.norm1 = Normalize(in_channels)
         
     | 
| 161 | 
         
            +
                    self.conv1 = torch.nn.Conv2d(in_channels,
         
     | 
| 162 | 
         
            +
                                                 out_channels,
         
     | 
| 163 | 
         
            +
                                                 kernel_size=3,
         
     | 
| 164 | 
         
            +
                                                 stride=1,
         
     | 
| 165 | 
         
            +
                                                 padding=1)
         
     | 
| 166 | 
         
            +
                    if temb_channels > 0:
         
     | 
| 167 | 
         
            +
                        self.temb_proj = torch.nn.Linear(temb_channels,
         
     | 
| 168 | 
         
            +
                                                         out_channels)
         
     | 
| 169 | 
         
            +
                    self.norm2 = Normalize(out_channels)
         
     | 
| 170 | 
         
            +
                    self.dropout = torch.nn.Dropout(dropout)
         
     | 
| 171 | 
         
            +
                    self.conv2 = torch.nn.Conv2d(out_channels,
         
     | 
| 172 | 
         
            +
                                                 out_channels,
         
     | 
| 173 | 
         
            +
                                                 kernel_size=3,
         
     | 
| 174 | 
         
            +
                                                 stride=1,
         
     | 
| 175 | 
         
            +
                                                 padding=1)
         
     | 
| 176 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 177 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 178 | 
         
            +
                            self.conv_shortcut = torch.nn.Conv2d(in_channels,
         
     | 
| 179 | 
         
            +
                                                                 out_channels,
         
     | 
| 180 | 
         
            +
                                                                 kernel_size=3,
         
     | 
| 181 | 
         
            +
                                                                 stride=1,
         
     | 
| 182 | 
         
            +
                                                                 padding=1)
         
     | 
| 183 | 
         
            +
                        else:
         
     | 
| 184 | 
         
            +
                            self.nin_shortcut = torch.nn.Conv2d(in_channels,
         
     | 
| 185 | 
         
            +
                                                                out_channels,
         
     | 
| 186 | 
         
            +
                                                                kernel_size=1,
         
     | 
| 187 | 
         
            +
                                                                stride=1,
         
     | 
| 188 | 
         
            +
                                                                padding=0)
         
     | 
| 189 | 
         
            +
             
     | 
| 190 | 
         
            +
                def forward(self, x, temb):
         
     | 
| 191 | 
         
            +
                    h = x
         
     | 
| 192 | 
         
            +
                    h = self.norm1(h)
         
     | 
| 193 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 194 | 
         
            +
                    h = self.conv1(h)
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                    if temb is not None:
         
     | 
| 197 | 
         
            +
                        h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                    h = self.norm2(h)
         
     | 
| 200 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 201 | 
         
            +
                    h = self.dropout(h)
         
     | 
| 202 | 
         
            +
                    h = self.conv2(h)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    if self.in_channels != self.out_channels:
         
     | 
| 205 | 
         
            +
                        if self.use_conv_shortcut:
         
     | 
| 206 | 
         
            +
                            x = self.conv_shortcut(x)
         
     | 
| 207 | 
         
            +
                        else:
         
     | 
| 208 | 
         
            +
                            x = self.nin_shortcut(x)
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    return x+h
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
            class Model(nn.Module):
         
     | 
| 213 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 214 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 215 | 
         
            +
                             resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
         
     | 
| 216 | 
         
            +
                    super().__init__()
         
     | 
| 217 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 218 | 
         
            +
                    self.ch = ch
         
     | 
| 219 | 
         
            +
                    self.temb_ch = self.ch*4
         
     | 
| 220 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 221 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 222 | 
         
            +
                    self.resolution = resolution
         
     | 
| 223 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                    self.use_timestep = use_timestep
         
     | 
| 226 | 
         
            +
                    if self.use_timestep:
         
     | 
| 227 | 
         
            +
                        # timestep embedding
         
     | 
| 228 | 
         
            +
                        self.temb = nn.Module()
         
     | 
| 229 | 
         
            +
                        self.temb.dense = nn.ModuleList([
         
     | 
| 230 | 
         
            +
                            torch.nn.Linear(self.ch,
         
     | 
| 231 | 
         
            +
                                            self.temb_ch),
         
     | 
| 232 | 
         
            +
                            torch.nn.Linear(self.temb_ch,
         
     | 
| 233 | 
         
            +
                                            self.temb_ch),
         
     | 
| 234 | 
         
            +
                        ])
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                    # downsampling
         
     | 
| 237 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(in_channels,
         
     | 
| 238 | 
         
            +
                                                   self.ch,
         
     | 
| 239 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 240 | 
         
            +
                                                   stride=1,
         
     | 
| 241 | 
         
            +
                                                   padding=1)
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                    curr_res = resolution
         
     | 
| 244 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 245 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 246 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 247 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 248 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 249 | 
         
            +
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 250 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 251 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 252 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 253 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 254 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 255 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 256 | 
         
            +
                            block_in = block_out
         
     | 
| 257 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 258 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 259 | 
         
            +
                        down = nn.Module()
         
     | 
| 260 | 
         
            +
                        down.block = block
         
     | 
| 261 | 
         
            +
                        down.attn = attn
         
     | 
| 262 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 263 | 
         
            +
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 264 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 265 | 
         
            +
                        self.down.append(down)
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                    # middle
         
     | 
| 268 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 269 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 270 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 271 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 272 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 273 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 274 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 275 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 276 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 277 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    # upsampling
         
     | 
| 280 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 281 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 282 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 283 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 284 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 285 | 
         
            +
                        skip_in = ch*ch_mult[i_level]
         
     | 
| 286 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 287 | 
         
            +
                            if i_block == self.num_res_blocks:
         
     | 
| 288 | 
         
            +
                                skip_in = ch*in_ch_mult[i_level]
         
     | 
| 289 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in+skip_in,
         
     | 
| 290 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 291 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 292 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 293 | 
         
            +
                            block_in = block_out
         
     | 
| 294 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 295 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 296 | 
         
            +
                        up = nn.Module()
         
     | 
| 297 | 
         
            +
                        up.block = block
         
     | 
| 298 | 
         
            +
                        up.attn = attn
         
     | 
| 299 | 
         
            +
                        if i_level != 0:
         
     | 
| 300 | 
         
            +
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 301 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 302 | 
         
            +
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    # end
         
     | 
| 305 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 306 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 307 | 
         
            +
                                                    out_ch,
         
     | 
| 308 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 309 | 
         
            +
                                                    stride=1,
         
     | 
| 310 | 
         
            +
                                                    padding=1)
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                def forward(self, x, t=None, context=None):
         
     | 
| 313 | 
         
            +
                    #assert x.shape[2] == x.shape[3] == self.resolution
         
     | 
| 314 | 
         
            +
                    if context is not None:
         
     | 
| 315 | 
         
            +
                        # assume aligned context, cat along channel axis
         
     | 
| 316 | 
         
            +
                        x = torch.cat((x, context), dim=1)
         
     | 
| 317 | 
         
            +
                    if self.use_timestep:
         
     | 
| 318 | 
         
            +
                        # timestep embedding
         
     | 
| 319 | 
         
            +
                        assert t is not None
         
     | 
| 320 | 
         
            +
                        temb = get_timestep_embedding(t, self.ch)
         
     | 
| 321 | 
         
            +
                        temb = self.temb.dense[0](temb)
         
     | 
| 322 | 
         
            +
                        temb = nonlinearity(temb)
         
     | 
| 323 | 
         
            +
                        temb = self.temb.dense[1](temb)
         
     | 
| 324 | 
         
            +
                    else:
         
     | 
| 325 | 
         
            +
                        temb = None
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                    # downsampling
         
     | 
| 328 | 
         
            +
                    hs = [self.conv_in(x)]
         
     | 
| 329 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 330 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 331 | 
         
            +
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 332 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 333 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 334 | 
         
            +
                            hs.append(h)
         
     | 
| 335 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 336 | 
         
            +
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                    # middle
         
     | 
| 339 | 
         
            +
                    h = hs[-1]
         
     | 
| 340 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 341 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 342 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
                    # upsampling
         
     | 
| 345 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 346 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 347 | 
         
            +
                            h = self.up[i_level].block[i_block](
         
     | 
| 348 | 
         
            +
                                torch.cat([h, hs.pop()], dim=1), temb)
         
     | 
| 349 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 350 | 
         
            +
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 351 | 
         
            +
                        if i_level != 0:
         
     | 
| 352 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                    # end
         
     | 
| 355 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 356 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 357 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 358 | 
         
            +
                    return h
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                def get_last_layer(self):
         
     | 
| 361 | 
         
            +
                    return self.conv_out.weight
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
            class Encoder(nn.Module):
         
     | 
| 365 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 366 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 367 | 
         
            +
                             resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
         
     | 
| 368 | 
         
            +
                             **ignore_kwargs):
         
     | 
| 369 | 
         
            +
                    super().__init__()
         
     | 
| 370 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 371 | 
         
            +
                    self.ch = ch
         
     | 
| 372 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 373 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 374 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 375 | 
         
            +
                    self.resolution = resolution
         
     | 
| 376 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                    # downsampling
         
     | 
| 379 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(in_channels,
         
     | 
| 380 | 
         
            +
                                                   self.ch,
         
     | 
| 381 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 382 | 
         
            +
                                                   stride=1,
         
     | 
| 383 | 
         
            +
                                                   padding=1)
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
                    curr_res = resolution
         
     | 
| 386 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 387 | 
         
            +
                    self.in_ch_mult = in_ch_mult
         
     | 
| 388 | 
         
            +
                    self.down = nn.ModuleList()
         
     | 
| 389 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 390 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 391 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 392 | 
         
            +
                        block_in = ch*in_ch_mult[i_level]
         
     | 
| 393 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 394 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 395 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 396 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 397 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 398 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 399 | 
         
            +
                            block_in = block_out
         
     | 
| 400 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 401 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 402 | 
         
            +
                        down = nn.Module()
         
     | 
| 403 | 
         
            +
                        down.block = block
         
     | 
| 404 | 
         
            +
                        down.attn = attn
         
     | 
| 405 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 406 | 
         
            +
                            down.downsample = Downsample(block_in, resamp_with_conv)
         
     | 
| 407 | 
         
            +
                            curr_res = curr_res // 2
         
     | 
| 408 | 
         
            +
                        self.down.append(down)
         
     | 
| 409 | 
         
            +
             
     | 
| 410 | 
         
            +
                    # middle
         
     | 
| 411 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 412 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 413 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 414 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 415 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 416 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 417 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 418 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 419 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 420 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                    # end
         
     | 
| 423 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 424 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 425 | 
         
            +
                                                    2*z_channels if double_z else z_channels,
         
     | 
| 426 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 427 | 
         
            +
                                                    stride=1,
         
     | 
| 428 | 
         
            +
                                                    padding=1)
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                def forward(self, x):
         
     | 
| 431 | 
         
            +
                    # timestep embedding
         
     | 
| 432 | 
         
            +
                    temb = None
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                    # print(f'encoder-input={x.shape}')
         
     | 
| 435 | 
         
            +
                    # downsampling
         
     | 
| 436 | 
         
            +
                    hs = [self.conv_in(x)]
         
     | 
| 437 | 
         
            +
                    # print(f'encoder-conv in feat={hs[0].shape}')
         
     | 
| 438 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 439 | 
         
            +
                        for i_block in range(self.num_res_blocks):
         
     | 
| 440 | 
         
            +
                            h = self.down[i_level].block[i_block](hs[-1], temb)
         
     | 
| 441 | 
         
            +
                            # print(f'encoder-down feat={h.shape}')
         
     | 
| 442 | 
         
            +
                            if len(self.down[i_level].attn) > 0:
         
     | 
| 443 | 
         
            +
                                h = self.down[i_level].attn[i_block](h)
         
     | 
| 444 | 
         
            +
                            hs.append(h)
         
     | 
| 445 | 
         
            +
                        if i_level != self.num_resolutions-1:
         
     | 
| 446 | 
         
            +
                            # print(f'encoder-downsample (input)={hs[-1].shape}')
         
     | 
| 447 | 
         
            +
                            hs.append(self.down[i_level].downsample(hs[-1]))
         
     | 
| 448 | 
         
            +
                            # print(f'encoder-downsample (output)={hs[-1].shape}')
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                    # middle
         
     | 
| 451 | 
         
            +
                    h = hs[-1]
         
     | 
| 452 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 453 | 
         
            +
                    # print(f'encoder-mid1 feat={h.shape}')
         
     | 
| 454 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 455 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 456 | 
         
            +
                    # print(f'encoder-mid2 feat={h.shape}')
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                    # end
         
     | 
| 459 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 460 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 461 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 462 | 
         
            +
                    # print(f'end feat={h.shape}')
         
     | 
| 463 | 
         
            +
                    return h
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
            class Decoder(nn.Module):
         
     | 
| 467 | 
         
            +
                def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
         
     | 
| 468 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
         
     | 
| 469 | 
         
            +
                             resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
         
     | 
| 470 | 
         
            +
                             attn_type="vanilla", **ignorekwargs):
         
     | 
| 471 | 
         
            +
                    super().__init__()
         
     | 
| 472 | 
         
            +
                    if use_linear_attn: attn_type = "linear"
         
     | 
| 473 | 
         
            +
                    self.ch = ch
         
     | 
| 474 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 475 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 476 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 477 | 
         
            +
                    self.resolution = resolution
         
     | 
| 478 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 479 | 
         
            +
                    self.give_pre_end = give_pre_end
         
     | 
| 480 | 
         
            +
                    self.tanh_out = tanh_out
         
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
                    # compute in_ch_mult, block_in and curr_res at lowest res
         
     | 
| 483 | 
         
            +
                    in_ch_mult = (1,)+tuple(ch_mult)
         
     | 
| 484 | 
         
            +
                    block_in = ch*ch_mult[self.num_resolutions-1]
         
     | 
| 485 | 
         
            +
                    curr_res = resolution // 2**(self.num_resolutions-1)
         
     | 
| 486 | 
         
            +
                    self.z_shape = (1,z_channels,curr_res,curr_res)
         
     | 
| 487 | 
         
            +
                    print("AE working on z of shape {} = {} dimensions.".format(
         
     | 
| 488 | 
         
            +
                        self.z_shape, np.prod(self.z_shape)))
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
                    # z to block_in
         
     | 
| 491 | 
         
            +
                    self.conv_in = torch.nn.Conv2d(z_channels,
         
     | 
| 492 | 
         
            +
                                                   block_in,
         
     | 
| 493 | 
         
            +
                                                   kernel_size=3,
         
     | 
| 494 | 
         
            +
                                                   stride=1,
         
     | 
| 495 | 
         
            +
                                                   padding=1)
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                    # middle
         
     | 
| 498 | 
         
            +
                    self.mid = nn.Module()
         
     | 
| 499 | 
         
            +
                    self.mid.block_1 = ResnetBlock(in_channels=block_in,
         
     | 
| 500 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 501 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 502 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 503 | 
         
            +
                    self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
         
     | 
| 504 | 
         
            +
                    self.mid.block_2 = ResnetBlock(in_channels=block_in,
         
     | 
| 505 | 
         
            +
                                                   out_channels=block_in,
         
     | 
| 506 | 
         
            +
                                                   temb_channels=self.temb_ch,
         
     | 
| 507 | 
         
            +
                                                   dropout=dropout)
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                    # upsampling
         
     | 
| 510 | 
         
            +
                    self.up = nn.ModuleList()
         
     | 
| 511 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 512 | 
         
            +
                        block = nn.ModuleList()
         
     | 
| 513 | 
         
            +
                        attn = nn.ModuleList()
         
     | 
| 514 | 
         
            +
                        block_out = ch*ch_mult[i_level]
         
     | 
| 515 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 516 | 
         
            +
                            block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 517 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 518 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 519 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 520 | 
         
            +
                            block_in = block_out
         
     | 
| 521 | 
         
            +
                            if curr_res in attn_resolutions:
         
     | 
| 522 | 
         
            +
                                attn.append(make_attn(block_in, attn_type=attn_type))
         
     | 
| 523 | 
         
            +
                        up = nn.Module()
         
     | 
| 524 | 
         
            +
                        up.block = block
         
     | 
| 525 | 
         
            +
                        up.attn = attn
         
     | 
| 526 | 
         
            +
                        if i_level != 0:
         
     | 
| 527 | 
         
            +
                            up.upsample = Upsample(block_in, resamp_with_conv)
         
     | 
| 528 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 529 | 
         
            +
                        self.up.insert(0, up) # prepend to get consistent order
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
                    # end
         
     | 
| 532 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 533 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 534 | 
         
            +
                                                    out_ch,
         
     | 
| 535 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 536 | 
         
            +
                                                    stride=1,
         
     | 
| 537 | 
         
            +
                                                    padding=1)
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                def forward(self, z):
         
     | 
| 540 | 
         
            +
                    #assert z.shape[1:] == self.z_shape[1:]
         
     | 
| 541 | 
         
            +
                    self.last_z_shape = z.shape
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
                    # print(f'decoder-input={z.shape}')
         
     | 
| 544 | 
         
            +
                    # timestep embedding
         
     | 
| 545 | 
         
            +
                    temb = None
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                    # z to block_in
         
     | 
| 548 | 
         
            +
                    h = self.conv_in(z)
         
     | 
| 549 | 
         
            +
                    # print(f'decoder-conv in feat={h.shape}')
         
     | 
| 550 | 
         
            +
             
     | 
| 551 | 
         
            +
                    # middle
         
     | 
| 552 | 
         
            +
                    h = self.mid.block_1(h, temb)
         
     | 
| 553 | 
         
            +
                    h = self.mid.attn_1(h)
         
     | 
| 554 | 
         
            +
                    h = self.mid.block_2(h, temb)
         
     | 
| 555 | 
         
            +
                    # print(f'decoder-mid feat={h.shape}')
         
     | 
| 556 | 
         
            +
             
     | 
| 557 | 
         
            +
                    # upsampling
         
     | 
| 558 | 
         
            +
                    for i_level in reversed(range(self.num_resolutions)):
         
     | 
| 559 | 
         
            +
                        for i_block in range(self.num_res_blocks+1):
         
     | 
| 560 | 
         
            +
                            h = self.up[i_level].block[i_block](h, temb)
         
     | 
| 561 | 
         
            +
                            if len(self.up[i_level].attn) > 0:
         
     | 
| 562 | 
         
            +
                                h = self.up[i_level].attn[i_block](h)
         
     | 
| 563 | 
         
            +
                            # print(f'decoder-up feat={h.shape}')
         
     | 
| 564 | 
         
            +
                        if i_level != 0:
         
     | 
| 565 | 
         
            +
                            h = self.up[i_level].upsample(h)
         
     | 
| 566 | 
         
            +
                            # print(f'decoder-upsample feat={h.shape}')
         
     | 
| 567 | 
         
            +
             
     | 
| 568 | 
         
            +
                    # end
         
     | 
| 569 | 
         
            +
                    if self.give_pre_end:
         
     | 
| 570 | 
         
            +
                        return h
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 573 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 574 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 575 | 
         
            +
                    # print(f'decoder-conv_out feat={h.shape}')
         
     | 
| 576 | 
         
            +
                    if self.tanh_out:
         
     | 
| 577 | 
         
            +
                        h = torch.tanh(h)
         
     | 
| 578 | 
         
            +
                    return h
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
            class SimpleDecoder(nn.Module):
         
     | 
| 582 | 
         
            +
                def __init__(self, in_channels, out_channels, *args, **kwargs):
         
     | 
| 583 | 
         
            +
                    super().__init__()
         
     | 
| 584 | 
         
            +
                    self.model = nn.ModuleList([nn.Conv2d(in_channels, in_channels, 1),
         
     | 
| 585 | 
         
            +
                                                 ResnetBlock(in_channels=in_channels,
         
     | 
| 586 | 
         
            +
                                                             out_channels=2 * in_channels,
         
     | 
| 587 | 
         
            +
                                                             temb_channels=0, dropout=0.0),
         
     | 
| 588 | 
         
            +
                                                 ResnetBlock(in_channels=2 * in_channels,
         
     | 
| 589 | 
         
            +
                                                            out_channels=4 * in_channels,
         
     | 
| 590 | 
         
            +
                                                            temb_channels=0, dropout=0.0),
         
     | 
| 591 | 
         
            +
                                                 ResnetBlock(in_channels=4 * in_channels,
         
     | 
| 592 | 
         
            +
                                                            out_channels=2 * in_channels,
         
     | 
| 593 | 
         
            +
                                                            temb_channels=0, dropout=0.0),
         
     | 
| 594 | 
         
            +
                                                 nn.Conv2d(2*in_channels, in_channels, 1),
         
     | 
| 595 | 
         
            +
                                                 Upsample(in_channels, with_conv=True)])
         
     | 
| 596 | 
         
            +
                    # end
         
     | 
| 597 | 
         
            +
                    self.norm_out = Normalize(in_channels)
         
     | 
| 598 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(in_channels,
         
     | 
| 599 | 
         
            +
                                                    out_channels,
         
     | 
| 600 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 601 | 
         
            +
                                                    stride=1,
         
     | 
| 602 | 
         
            +
                                                    padding=1)
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
                def forward(self, x):
         
     | 
| 605 | 
         
            +
                    for i, layer in enumerate(self.model):
         
     | 
| 606 | 
         
            +
                        if i in [1,2,3]:
         
     | 
| 607 | 
         
            +
                            x = layer(x, None)
         
     | 
| 608 | 
         
            +
                        else:
         
     | 
| 609 | 
         
            +
                            x = layer(x)
         
     | 
| 610 | 
         
            +
             
     | 
| 611 | 
         
            +
                    h = self.norm_out(x)
         
     | 
| 612 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 613 | 
         
            +
                    x = self.conv_out(h)
         
     | 
| 614 | 
         
            +
                    return x
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
             
     | 
| 617 | 
         
            +
            class UpsampleDecoder(nn.Module):
         
     | 
| 618 | 
         
            +
                def __init__(self, in_channels, out_channels, ch, num_res_blocks, resolution,
         
     | 
| 619 | 
         
            +
                             ch_mult=(2,2), dropout=0.0):
         
     | 
| 620 | 
         
            +
                    super().__init__()
         
     | 
| 621 | 
         
            +
                    # upsampling
         
     | 
| 622 | 
         
            +
                    self.temb_ch = 0
         
     | 
| 623 | 
         
            +
                    self.num_resolutions = len(ch_mult)
         
     | 
| 624 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 625 | 
         
            +
                    block_in = in_channels
         
     | 
| 626 | 
         
            +
                    curr_res = resolution // 2 ** (self.num_resolutions - 1)
         
     | 
| 627 | 
         
            +
                    self.res_blocks = nn.ModuleList()
         
     | 
| 628 | 
         
            +
                    self.upsample_blocks = nn.ModuleList()
         
     | 
| 629 | 
         
            +
                    for i_level in range(self.num_resolutions):
         
     | 
| 630 | 
         
            +
                        res_block = []
         
     | 
| 631 | 
         
            +
                        block_out = ch * ch_mult[i_level]
         
     | 
| 632 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 633 | 
         
            +
                            res_block.append(ResnetBlock(in_channels=block_in,
         
     | 
| 634 | 
         
            +
                                                     out_channels=block_out,
         
     | 
| 635 | 
         
            +
                                                     temb_channels=self.temb_ch,
         
     | 
| 636 | 
         
            +
                                                     dropout=dropout))
         
     | 
| 637 | 
         
            +
                            block_in = block_out
         
     | 
| 638 | 
         
            +
                        self.res_blocks.append(nn.ModuleList(res_block))
         
     | 
| 639 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 640 | 
         
            +
                            self.upsample_blocks.append(Upsample(block_in, True))
         
     | 
| 641 | 
         
            +
                            curr_res = curr_res * 2
         
     | 
| 642 | 
         
            +
             
     | 
| 643 | 
         
            +
                    # end
         
     | 
| 644 | 
         
            +
                    self.norm_out = Normalize(block_in)
         
     | 
| 645 | 
         
            +
                    self.conv_out = torch.nn.Conv2d(block_in,
         
     | 
| 646 | 
         
            +
                                                    out_channels,
         
     | 
| 647 | 
         
            +
                                                    kernel_size=3,
         
     | 
| 648 | 
         
            +
                                                    stride=1,
         
     | 
| 649 | 
         
            +
                                                    padding=1)
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                def forward(self, x):
         
     | 
| 652 | 
         
            +
                    # upsampling
         
     | 
| 653 | 
         
            +
                    h = x
         
     | 
| 654 | 
         
            +
                    for k, i_level in enumerate(range(self.num_resolutions)):
         
     | 
| 655 | 
         
            +
                        for i_block in range(self.num_res_blocks + 1):
         
     | 
| 656 | 
         
            +
                            h = self.res_blocks[i_level][i_block](h, None)
         
     | 
| 657 | 
         
            +
                        if i_level != self.num_resolutions - 1:
         
     | 
| 658 | 
         
            +
                            h = self.upsample_blocks[k](h)
         
     | 
| 659 | 
         
            +
                    h = self.norm_out(h)
         
     | 
| 660 | 
         
            +
                    h = nonlinearity(h)
         
     | 
| 661 | 
         
            +
                    h = self.conv_out(h)
         
     | 
| 662 | 
         
            +
                    return h
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
             
     | 
| 665 | 
         
            +
            class LatentRescaler(nn.Module):
         
     | 
| 666 | 
         
            +
                def __init__(self, factor, in_channels, mid_channels, out_channels, depth=2):
         
     | 
| 667 | 
         
            +
                    super().__init__()
         
     | 
| 668 | 
         
            +
                    # residual block, interpolate, residual block
         
     | 
| 669 | 
         
            +
                    self.factor = factor
         
     | 
| 670 | 
         
            +
                    self.conv_in = nn.Conv2d(in_channels,
         
     | 
| 671 | 
         
            +
                                             mid_channels,
         
     | 
| 672 | 
         
            +
                                             kernel_size=3,
         
     | 
| 673 | 
         
            +
                                             stride=1,
         
     | 
| 674 | 
         
            +
                                             padding=1)
         
     | 
| 675 | 
         
            +
                    self.res_block1 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
         
     | 
| 676 | 
         
            +
                                                                 out_channels=mid_channels,
         
     | 
| 677 | 
         
            +
                                                                 temb_channels=0,
         
     | 
| 678 | 
         
            +
                                                                 dropout=0.0) for _ in range(depth)])
         
     | 
| 679 | 
         
            +
                    self.attn = AttnBlock(mid_channels)
         
     | 
| 680 | 
         
            +
                    self.res_block2 = nn.ModuleList([ResnetBlock(in_channels=mid_channels,
         
     | 
| 681 | 
         
            +
                                                                 out_channels=mid_channels,
         
     | 
| 682 | 
         
            +
                                                                 temb_channels=0,
         
     | 
| 683 | 
         
            +
                                                                 dropout=0.0) for _ in range(depth)])
         
     | 
| 684 | 
         
            +
             
     | 
| 685 | 
         
            +
                    self.conv_out = nn.Conv2d(mid_channels,
         
     | 
| 686 | 
         
            +
                                              out_channels,
         
     | 
| 687 | 
         
            +
                                              kernel_size=1,
         
     | 
| 688 | 
         
            +
                                              )
         
     | 
| 689 | 
         
            +
             
     | 
| 690 | 
         
            +
                def forward(self, x):
         
     | 
| 691 | 
         
            +
                    x = self.conv_in(x)
         
     | 
| 692 | 
         
            +
                    for block in self.res_block1:
         
     | 
| 693 | 
         
            +
                        x = block(x, None)
         
     | 
| 694 | 
         
            +
                    x = torch.nn.functional.interpolate(x, size=(int(round(x.shape[2]*self.factor)), int(round(x.shape[3]*self.factor))))
         
     | 
| 695 | 
         
            +
                    x = self.attn(x)
         
     | 
| 696 | 
         
            +
                    for block in self.res_block2:
         
     | 
| 697 | 
         
            +
                        x = block(x, None)
         
     | 
| 698 | 
         
            +
                    x = self.conv_out(x)
         
     | 
| 699 | 
         
            +
                    return x
         
     | 
| 700 | 
         
            +
             
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
            class MergedRescaleEncoder(nn.Module):
         
     | 
| 703 | 
         
            +
                def __init__(self, in_channels, ch, resolution, out_ch, num_res_blocks,
         
     | 
| 704 | 
         
            +
                             attn_resolutions, dropout=0.0, resamp_with_conv=True,
         
     | 
| 705 | 
         
            +
                             ch_mult=(1,2,4,8), rescale_factor=1.0, rescale_module_depth=1):
         
     | 
| 706 | 
         
            +
                    super().__init__()
         
     | 
| 707 | 
         
            +
                    intermediate_chn = ch * ch_mult[-1]
         
     | 
| 708 | 
         
            +
                    self.encoder = Encoder(in_channels=in_channels, num_res_blocks=num_res_blocks, ch=ch, ch_mult=ch_mult,
         
     | 
| 709 | 
         
            +
                                           z_channels=intermediate_chn, double_z=False, resolution=resolution,
         
     | 
| 710 | 
         
            +
                                           attn_resolutions=attn_resolutions, dropout=dropout, resamp_with_conv=resamp_with_conv,
         
     | 
| 711 | 
         
            +
                                           out_ch=None)
         
     | 
| 712 | 
         
            +
                    self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=intermediate_chn,
         
     | 
| 713 | 
         
            +
                                                   mid_channels=intermediate_chn, out_channels=out_ch, depth=rescale_module_depth)
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
                def forward(self, x):
         
     | 
| 716 | 
         
            +
                    x = self.encoder(x)
         
     | 
| 717 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 718 | 
         
            +
                    return x
         
     | 
| 719 | 
         
            +
             
     | 
| 720 | 
         
            +
             
     | 
| 721 | 
         
            +
            class MergedRescaleDecoder(nn.Module):
         
     | 
| 722 | 
         
            +
                def __init__(self, z_channels, out_ch, resolution, num_res_blocks, attn_resolutions, ch, ch_mult=(1,2,4,8),
         
     | 
| 723 | 
         
            +
                             dropout=0.0, resamp_with_conv=True, rescale_factor=1.0, rescale_module_depth=1):
         
     | 
| 724 | 
         
            +
                    super().__init__()
         
     | 
| 725 | 
         
            +
                    tmp_chn = z_channels*ch_mult[-1]
         
     | 
| 726 | 
         
            +
                    self.decoder = Decoder(out_ch=out_ch, z_channels=tmp_chn, attn_resolutions=attn_resolutions, dropout=dropout,
         
     | 
| 727 | 
         
            +
                                           resamp_with_conv=resamp_with_conv, in_channels=None, num_res_blocks=num_res_blocks,
         
     | 
| 728 | 
         
            +
                                           ch_mult=ch_mult, resolution=resolution, ch=ch)
         
     | 
| 729 | 
         
            +
                    self.rescaler = LatentRescaler(factor=rescale_factor, in_channels=z_channels, mid_channels=tmp_chn,
         
     | 
| 730 | 
         
            +
                                                   out_channels=tmp_chn, depth=rescale_module_depth)
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
                def forward(self, x):
         
     | 
| 733 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 734 | 
         
            +
                    x = self.decoder(x)
         
     | 
| 735 | 
         
            +
                    return x
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
            class Upsampler(nn.Module):
         
     | 
| 739 | 
         
            +
                def __init__(self, in_size, out_size, in_channels, out_channels, ch_mult=2):
         
     | 
| 740 | 
         
            +
                    super().__init__()
         
     | 
| 741 | 
         
            +
                    assert out_size >= in_size
         
     | 
| 742 | 
         
            +
                    num_blocks = int(np.log2(out_size//in_size))+1
         
     | 
| 743 | 
         
            +
                    factor_up = 1.+ (out_size % in_size)
         
     | 
| 744 | 
         
            +
                    print(f"Building {self.__class__.__name__} with in_size: {in_size} --> out_size {out_size} and factor {factor_up}")
         
     | 
| 745 | 
         
            +
                    self.rescaler = LatentRescaler(factor=factor_up, in_channels=in_channels, mid_channels=2*in_channels,
         
     | 
| 746 | 
         
            +
                                                   out_channels=in_channels)
         
     | 
| 747 | 
         
            +
                    self.decoder = Decoder(out_ch=out_channels, resolution=out_size, z_channels=in_channels, num_res_blocks=2,
         
     | 
| 748 | 
         
            +
                                           attn_resolutions=[], in_channels=None, ch=in_channels,
         
     | 
| 749 | 
         
            +
                                           ch_mult=[ch_mult for _ in range(num_blocks)])
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
                def forward(self, x):
         
     | 
| 752 | 
         
            +
                    x = self.rescaler(x)
         
     | 
| 753 | 
         
            +
                    x = self.decoder(x)
         
     | 
| 754 | 
         
            +
                    return x
         
     | 
| 755 | 
         
            +
             
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
            class Resize(nn.Module):
         
     | 
| 758 | 
         
            +
                def __init__(self, in_channels=None, learned=False, mode="bilinear"):
         
     | 
| 759 | 
         
            +
                    super().__init__()
         
     | 
| 760 | 
         
            +
                    self.with_conv = learned
         
     | 
| 761 | 
         
            +
                    self.mode = mode
         
     | 
| 762 | 
         
            +
                    if self.with_conv:
         
     | 
| 763 | 
         
            +
                        print(f"Note: {self.__class__.__name} uses learned downsampling and will ignore the fixed {mode} mode")
         
     | 
| 764 | 
         
            +
                        raise NotImplementedError()
         
     | 
| 765 | 
         
            +
                        assert in_channels is not None
         
     | 
| 766 | 
         
            +
                        # no asymmetric padding in torch conv, must do it ourselves
         
     | 
| 767 | 
         
            +
                        self.conv = torch.nn.Conv2d(in_channels,
         
     | 
| 768 | 
         
            +
                                                    in_channels,
         
     | 
| 769 | 
         
            +
                                                    kernel_size=4,
         
     | 
| 770 | 
         
            +
                                                    stride=2,
         
     | 
| 771 | 
         
            +
                                                    padding=1)
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                def forward(self, x, scale_factor=1.0):
         
     | 
| 774 | 
         
            +
                    if scale_factor==1.0:
         
     | 
| 775 | 
         
            +
                        return x
         
     | 
| 776 | 
         
            +
                    else:
         
     | 
| 777 | 
         
            +
                        x = torch.nn.functional.interpolate(x, mode=self.mode, align_corners=False, scale_factor=scale_factor)
         
     | 
| 778 | 
         
            +
                    return x
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
            class FirstStagePostProcessor(nn.Module):
         
     | 
| 781 | 
         
            +
             
     | 
| 782 | 
         
            +
                def __init__(self, ch_mult:list, in_channels,
         
     | 
| 783 | 
         
            +
                             pretrained_model:nn.Module=None,
         
     | 
| 784 | 
         
            +
                             reshape=False,
         
     | 
| 785 | 
         
            +
                             n_channels=None,
         
     | 
| 786 | 
         
            +
                             dropout=0.,
         
     | 
| 787 | 
         
            +
                             pretrained_config=None):
         
     | 
| 788 | 
         
            +
                    super().__init__()
         
     | 
| 789 | 
         
            +
                    if pretrained_config is None:
         
     | 
| 790 | 
         
            +
                        assert pretrained_model is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
         
     | 
| 791 | 
         
            +
                        self.pretrained_model = pretrained_model
         
     | 
| 792 | 
         
            +
                    else:
         
     | 
| 793 | 
         
            +
                        assert pretrained_config is not None, 'Either "pretrained_model" or "pretrained_config" must not be None'
         
     | 
| 794 | 
         
            +
                        self.instantiate_pretrained(pretrained_config)
         
     | 
| 795 | 
         
            +
             
     | 
| 796 | 
         
            +
                    self.do_reshape = reshape
         
     | 
| 797 | 
         
            +
             
     | 
| 798 | 
         
            +
                    if n_channels is None:
         
     | 
| 799 | 
         
            +
                        n_channels = self.pretrained_model.encoder.ch
         
     | 
| 800 | 
         
            +
             
     | 
| 801 | 
         
            +
                    self.proj_norm = Normalize(in_channels,num_groups=in_channels//2)
         
     | 
| 802 | 
         
            +
                    self.proj = nn.Conv2d(in_channels,n_channels,kernel_size=3,
         
     | 
| 803 | 
         
            +
                                        stride=1,padding=1)
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                    blocks = []
         
     | 
| 806 | 
         
            +
                    downs = []
         
     | 
| 807 | 
         
            +
                    ch_in = n_channels
         
     | 
| 808 | 
         
            +
                    for m in ch_mult:
         
     | 
| 809 | 
         
            +
                        blocks.append(ResnetBlock(in_channels=ch_in,out_channels=m*n_channels,dropout=dropout))
         
     | 
| 810 | 
         
            +
                        ch_in = m * n_channels
         
     | 
| 811 | 
         
            +
                        downs.append(Downsample(ch_in, with_conv=False))
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
                    self.model = nn.ModuleList(blocks)
         
     | 
| 814 | 
         
            +
                    self.downsampler = nn.ModuleList(downs)
         
     | 
| 815 | 
         
            +
             
     | 
| 816 | 
         
            +
             
     | 
| 817 | 
         
            +
                def instantiate_pretrained(self, config):
         
     | 
| 818 | 
         
            +
                    model = instantiate_from_config(config)
         
     | 
| 819 | 
         
            +
                    self.pretrained_model = model.eval()
         
     | 
| 820 | 
         
            +
                    # self.pretrained_model.train = False
         
     | 
| 821 | 
         
            +
                    for param in self.pretrained_model.parameters():
         
     | 
| 822 | 
         
            +
                        param.requires_grad = False
         
     | 
| 823 | 
         
            +
             
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                @torch.no_grad()
         
     | 
| 826 | 
         
            +
                def encode_with_pretrained(self,x):
         
     | 
| 827 | 
         
            +
                    c = self.pretrained_model.encode(x)
         
     | 
| 828 | 
         
            +
                    if isinstance(c, DiagonalGaussianDistribution):
         
     | 
| 829 | 
         
            +
                        c = c.mode()
         
     | 
| 830 | 
         
            +
                    return  c
         
     | 
| 831 | 
         
            +
             
     | 
| 832 | 
         
            +
                def forward(self,x):
         
     | 
| 833 | 
         
            +
                    z_fs = self.encode_with_pretrained(x)
         
     | 
| 834 | 
         
            +
                    z = self.proj_norm(z_fs)
         
     | 
| 835 | 
         
            +
                    z = self.proj(z)
         
     | 
| 836 | 
         
            +
                    z = nonlinearity(z)
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                    for submodel, downmodel in zip(self.model,self.downsampler):
         
     | 
| 839 | 
         
            +
                        z = submodel(z,temb=None)
         
     | 
| 840 | 
         
            +
                        z = downmodel(z)
         
     | 
| 841 | 
         
            +
             
     | 
| 842 | 
         
            +
                    if self.do_reshape:
         
     | 
| 843 | 
         
            +
                        z = rearrange(z,'b c h w -> b (h w) c')
         
     | 
| 844 | 
         
            +
                    return z
         
     | 
    	
        lvdm/modules/networks/openaimodel3d.py
    ADDED
    
    | 
         @@ -0,0 +1,603 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            from functools import partial
         
     | 
| 2 | 
         
            +
            from abc import abstractmethod
         
     | 
| 3 | 
         
            +
            import torch
         
     | 
| 4 | 
         
            +
            import torch.nn as nn
         
     | 
| 5 | 
         
            +
            from einops import rearrange
         
     | 
| 6 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 7 | 
         
            +
            from lvdm.models.utils_diffusion import timestep_embedding
         
     | 
| 8 | 
         
            +
            from lvdm.common import checkpoint
         
     | 
| 9 | 
         
            +
            from lvdm.basics import (
         
     | 
| 10 | 
         
            +
                zero_module,
         
     | 
| 11 | 
         
            +
                conv_nd,
         
     | 
| 12 | 
         
            +
                linear,
         
     | 
| 13 | 
         
            +
                avg_pool_nd,
         
     | 
| 14 | 
         
            +
                normalization
         
     | 
| 15 | 
         
            +
            )
         
     | 
| 16 | 
         
            +
            from lvdm.modules.attention import SpatialTransformer, TemporalTransformer
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            class TimestepBlock(nn.Module):
         
     | 
| 20 | 
         
            +
                """
         
     | 
| 21 | 
         
            +
                Any module where forward() takes timestep embeddings as a second argument.
         
     | 
| 22 | 
         
            +
                """
         
     | 
| 23 | 
         
            +
                @abstractmethod
         
     | 
| 24 | 
         
            +
                def forward(self, x, emb):
         
     | 
| 25 | 
         
            +
                    """
         
     | 
| 26 | 
         
            +
                    Apply the module to `x` given `emb` timestep embeddings.
         
     | 
| 27 | 
         
            +
                    """
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
         
     | 
| 31 | 
         
            +
                """
         
     | 
| 32 | 
         
            +
                A sequential module that passes timestep embeddings to the children that
         
     | 
| 33 | 
         
            +
                support it as an extra input.
         
     | 
| 34 | 
         
            +
                """
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                def forward(self, x, emb, context=None, batch_size=None):
         
     | 
| 37 | 
         
            +
                    for layer in self:
         
     | 
| 38 | 
         
            +
                        if isinstance(layer, TimestepBlock):
         
     | 
| 39 | 
         
            +
                            x = layer(x, emb, batch_size=batch_size)
         
     | 
| 40 | 
         
            +
                        elif isinstance(layer, SpatialTransformer):
         
     | 
| 41 | 
         
            +
                            x = layer(x, context)
         
     | 
| 42 | 
         
            +
                        elif isinstance(layer, TemporalTransformer):
         
     | 
| 43 | 
         
            +
                            x = rearrange(x, '(b f) c h w -> b c f h w', b=batch_size)
         
     | 
| 44 | 
         
            +
                            x = layer(x, context)
         
     | 
| 45 | 
         
            +
                            x = rearrange(x, 'b c f h w -> (b f) c h w')
         
     | 
| 46 | 
         
            +
                        else:
         
     | 
| 47 | 
         
            +
                            x = layer(x)
         
     | 
| 48 | 
         
            +
                    return x
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            class Downsample(nn.Module):
         
     | 
| 52 | 
         
            +
                """
         
     | 
| 53 | 
         
            +
                A downsampling layer with an optional convolution.
         
     | 
| 54 | 
         
            +
                :param channels: channels in the inputs and outputs.
         
     | 
| 55 | 
         
            +
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 56 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 57 | 
         
            +
                             downsampling occurs in the inner-two dimensions.
         
     | 
| 58 | 
         
            +
                """
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         
     | 
| 61 | 
         
            +
                    super().__init__()
         
     | 
| 62 | 
         
            +
                    self.channels = channels
         
     | 
| 63 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 64 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 65 | 
         
            +
                    self.dims = dims
         
     | 
| 66 | 
         
            +
                    stride = 2 if dims != 3 else (1, 2, 2)
         
     | 
| 67 | 
         
            +
                    if use_conv:
         
     | 
| 68 | 
         
            +
                        self.op = conv_nd(
         
     | 
| 69 | 
         
            +
                            dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
         
     | 
| 70 | 
         
            +
                        )
         
     | 
| 71 | 
         
            +
                    else:
         
     | 
| 72 | 
         
            +
                        assert self.channels == self.out_channels
         
     | 
| 73 | 
         
            +
                        self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                def forward(self, x):
         
     | 
| 76 | 
         
            +
                    assert x.shape[1] == self.channels
         
     | 
| 77 | 
         
            +
                    return self.op(x)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            class Upsample(nn.Module):
         
     | 
| 81 | 
         
            +
                """
         
     | 
| 82 | 
         
            +
                An upsampling layer with an optional convolution.
         
     | 
| 83 | 
         
            +
                :param channels: channels in the inputs and outputs.
         
     | 
| 84 | 
         
            +
                :param use_conv: a bool determining if a convolution is applied.
         
     | 
| 85 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
         
     | 
| 86 | 
         
            +
                             upsampling occurs in the inner-two dimensions.
         
     | 
| 87 | 
         
            +
                """
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
         
     | 
| 90 | 
         
            +
                    super().__init__()
         
     | 
| 91 | 
         
            +
                    self.channels = channels
         
     | 
| 92 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 93 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 94 | 
         
            +
                    self.dims = dims
         
     | 
| 95 | 
         
            +
                    if use_conv:
         
     | 
| 96 | 
         
            +
                        self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=padding)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                def forward(self, x):
         
     | 
| 99 | 
         
            +
                    assert x.shape[1] == self.channels
         
     | 
| 100 | 
         
            +
                    if self.dims == 3:
         
     | 
| 101 | 
         
            +
                        x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode='nearest')
         
     | 
| 102 | 
         
            +
                    else:
         
     | 
| 103 | 
         
            +
                        x = F.interpolate(x, scale_factor=2, mode='nearest')
         
     | 
| 104 | 
         
            +
                    if self.use_conv:
         
     | 
| 105 | 
         
            +
                        x = self.conv(x)
         
     | 
| 106 | 
         
            +
                    return x
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            class ResBlock(TimestepBlock):
         
     | 
| 110 | 
         
            +
                """
         
     | 
| 111 | 
         
            +
                A residual block that can optionally change the number of channels.
         
     | 
| 112 | 
         
            +
                :param channels: the number of input channels.
         
     | 
| 113 | 
         
            +
                :param emb_channels: the number of timestep embedding channels.
         
     | 
| 114 | 
         
            +
                :param dropout: the rate of dropout.
         
     | 
| 115 | 
         
            +
                :param out_channels: if specified, the number of out channels.
         
     | 
| 116 | 
         
            +
                :param use_conv: if True and out_channels is specified, use a spatial
         
     | 
| 117 | 
         
            +
                    convolution instead of a smaller 1x1 convolution to change the
         
     | 
| 118 | 
         
            +
                    channels in the skip connection.
         
     | 
| 119 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 120 | 
         
            +
                :param up: if True, use this block for upsampling.
         
     | 
| 121 | 
         
            +
                :param down: if True, use this block for downsampling.
         
     | 
| 122 | 
         
            +
                :param use_temporal_conv: if True, use the temporal convolution.
         
     | 
| 123 | 
         
            +
                :param use_image_dataset: if True, the temporal parameters will not be optimized.
         
     | 
| 124 | 
         
            +
                """
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                def __init__(
         
     | 
| 127 | 
         
            +
                    self,
         
     | 
| 128 | 
         
            +
                    channels,
         
     | 
| 129 | 
         
            +
                    emb_channels,
         
     | 
| 130 | 
         
            +
                    dropout,
         
     | 
| 131 | 
         
            +
                    out_channels=None,
         
     | 
| 132 | 
         
            +
                    use_scale_shift_norm=False,
         
     | 
| 133 | 
         
            +
                    dims=2,
         
     | 
| 134 | 
         
            +
                    use_checkpoint=False,
         
     | 
| 135 | 
         
            +
                    use_conv=False,
         
     | 
| 136 | 
         
            +
                    up=False,
         
     | 
| 137 | 
         
            +
                    down=False,
         
     | 
| 138 | 
         
            +
                    use_temporal_conv=False,
         
     | 
| 139 | 
         
            +
                    tempspatial_aware=False
         
     | 
| 140 | 
         
            +
                ):
         
     | 
| 141 | 
         
            +
                    super().__init__()
         
     | 
| 142 | 
         
            +
                    self.channels = channels
         
     | 
| 143 | 
         
            +
                    self.emb_channels = emb_channels
         
     | 
| 144 | 
         
            +
                    self.dropout = dropout
         
     | 
| 145 | 
         
            +
                    self.out_channels = out_channels or channels
         
     | 
| 146 | 
         
            +
                    self.use_conv = use_conv
         
     | 
| 147 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 148 | 
         
            +
                    self.use_scale_shift_norm = use_scale_shift_norm
         
     | 
| 149 | 
         
            +
                    self.use_temporal_conv = use_temporal_conv
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    self.in_layers = nn.Sequential(
         
     | 
| 152 | 
         
            +
                        normalization(channels),
         
     | 
| 153 | 
         
            +
                        nn.SiLU(),
         
     | 
| 154 | 
         
            +
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         
     | 
| 155 | 
         
            +
                    )
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    self.updown = up or down
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                    if up:
         
     | 
| 160 | 
         
            +
                        self.h_upd = Upsample(channels, False, dims)
         
     | 
| 161 | 
         
            +
                        self.x_upd = Upsample(channels, False, dims)
         
     | 
| 162 | 
         
            +
                    elif down:
         
     | 
| 163 | 
         
            +
                        self.h_upd = Downsample(channels, False, dims)
         
     | 
| 164 | 
         
            +
                        self.x_upd = Downsample(channels, False, dims)
         
     | 
| 165 | 
         
            +
                    else:
         
     | 
| 166 | 
         
            +
                        self.h_upd = self.x_upd = nn.Identity()
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                    self.emb_layers = nn.Sequential(
         
     | 
| 169 | 
         
            +
                        nn.SiLU(),
         
     | 
| 170 | 
         
            +
                        nn.Linear(
         
     | 
| 171 | 
         
            +
                            emb_channels,
         
     | 
| 172 | 
         
            +
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         
     | 
| 173 | 
         
            +
                        ),
         
     | 
| 174 | 
         
            +
                    )
         
     | 
| 175 | 
         
            +
                    self.out_layers = nn.Sequential(
         
     | 
| 176 | 
         
            +
                        normalization(self.out_channels),
         
     | 
| 177 | 
         
            +
                        nn.SiLU(),
         
     | 
| 178 | 
         
            +
                        nn.Dropout(p=dropout),
         
     | 
| 179 | 
         
            +
                        zero_module(nn.Conv2d(self.out_channels, self.out_channels, 3, padding=1)),
         
     | 
| 180 | 
         
            +
                    )
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                    if self.out_channels == channels:
         
     | 
| 183 | 
         
            +
                        self.skip_connection = nn.Identity()
         
     | 
| 184 | 
         
            +
                    elif use_conv:
         
     | 
| 185 | 
         
            +
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1)
         
     | 
| 186 | 
         
            +
                    else:
         
     | 
| 187 | 
         
            +
                        self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                    if self.use_temporal_conv:
         
     | 
| 190 | 
         
            +
                        self.temopral_conv = TemporalConvBlock(
         
     | 
| 191 | 
         
            +
                            self.out_channels,
         
     | 
| 192 | 
         
            +
                            self.out_channels,
         
     | 
| 193 | 
         
            +
                            dropout=0.1,
         
     | 
| 194 | 
         
            +
                            spatial_aware=tempspatial_aware
         
     | 
| 195 | 
         
            +
                        )
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                def forward(self, x, emb, batch_size=None):
         
     | 
| 198 | 
         
            +
                    """
         
     | 
| 199 | 
         
            +
                    Apply the block to a Tensor, conditioned on a timestep embedding.
         
     | 
| 200 | 
         
            +
                    :param x: an [N x C x ...] Tensor of features.
         
     | 
| 201 | 
         
            +
                    :param emb: an [N x emb_channels] Tensor of timestep embeddings.
         
     | 
| 202 | 
         
            +
                    :return: an [N x C x ...] Tensor of outputs.
         
     | 
| 203 | 
         
            +
                    """
         
     | 
| 204 | 
         
            +
                    input_tuple = (x, emb)
         
     | 
| 205 | 
         
            +
                    if batch_size:
         
     | 
| 206 | 
         
            +
                        forward_batchsize = partial(self._forward, batch_size=batch_size)
         
     | 
| 207 | 
         
            +
                        return checkpoint(forward_batchsize, input_tuple, self.parameters(), self.use_checkpoint)
         
     | 
| 208 | 
         
            +
                    return checkpoint(self._forward, input_tuple, self.parameters(), self.use_checkpoint)
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                def _forward(self, x, emb, batch_size=None):
         
     | 
| 211 | 
         
            +
                    if self.updown:
         
     | 
| 212 | 
         
            +
                        in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
         
     | 
| 213 | 
         
            +
                        h = in_rest(x)
         
     | 
| 214 | 
         
            +
                        h = self.h_upd(h)
         
     | 
| 215 | 
         
            +
                        x = self.x_upd(x)
         
     | 
| 216 | 
         
            +
                        h = in_conv(h)
         
     | 
| 217 | 
         
            +
                    else:
         
     | 
| 218 | 
         
            +
                        h = self.in_layers(x)
         
     | 
| 219 | 
         
            +
                    emb_out = self.emb_layers(emb).type(h.dtype)
         
     | 
| 220 | 
         
            +
                    while len(emb_out.shape) < len(h.shape):
         
     | 
| 221 | 
         
            +
                        emb_out = emb_out[..., None]
         
     | 
| 222 | 
         
            +
                    if self.use_scale_shift_norm:
         
     | 
| 223 | 
         
            +
                        out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
         
     | 
| 224 | 
         
            +
                        scale, shift = torch.chunk(emb_out, 2, dim=1)
         
     | 
| 225 | 
         
            +
                        h = out_norm(h) * (1 + scale) + shift
         
     | 
| 226 | 
         
            +
                        h = out_rest(h)
         
     | 
| 227 | 
         
            +
                    else:
         
     | 
| 228 | 
         
            +
                        h = h + emb_out
         
     | 
| 229 | 
         
            +
                        h = self.out_layers(h)
         
     | 
| 230 | 
         
            +
                    h = self.skip_connection(x) + h
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    if self.use_temporal_conv and batch_size:
         
     | 
| 233 | 
         
            +
                        h = rearrange(h, '(b t) c h w -> b c t h w', b=batch_size)
         
     | 
| 234 | 
         
            +
                        h = self.temopral_conv(h)
         
     | 
| 235 | 
         
            +
                        h = rearrange(h, 'b c t h w -> (b t) c h w')
         
     | 
| 236 | 
         
            +
                    return h
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
            class TemporalConvBlock(nn.Module):
         
     | 
| 240 | 
         
            +
                """
         
     | 
| 241 | 
         
            +
                Adapted from modelscope: https://github.com/modelscope/modelscope/blob/master/modelscope/models/multi_modal/video_synthesis/unet_sd.py
         
     | 
| 242 | 
         
            +
                """
         
     | 
| 243 | 
         
            +
                def __init__(self, in_channels, out_channels=None, dropout=0.0, spatial_aware=False):
         
     | 
| 244 | 
         
            +
                    super(TemporalConvBlock, self).__init__()
         
     | 
| 245 | 
         
            +
                    if out_channels is None:
         
     | 
| 246 | 
         
            +
                        out_channels = in_channels
         
     | 
| 247 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 248 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 249 | 
         
            +
                    th_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 3, 1)
         
     | 
| 250 | 
         
            +
                    th_padding_shape = (1, 0, 0) if not spatial_aware else (1, 1, 0)
         
     | 
| 251 | 
         
            +
                    tw_kernel_shape = (3, 1, 1) if not spatial_aware else (3, 1, 3)
         
     | 
| 252 | 
         
            +
                    tw_padding_shape = (1, 0, 0) if not spatial_aware else (1, 0, 1)
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    # conv layers
         
     | 
| 255 | 
         
            +
                    self.conv1 = nn.Sequential(
         
     | 
| 256 | 
         
            +
                        nn.GroupNorm(32, in_channels), nn.SiLU(),
         
     | 
| 257 | 
         
            +
                        nn.Conv3d(in_channels, out_channels, th_kernel_shape, padding=th_padding_shape))
         
     | 
| 258 | 
         
            +
                    self.conv2 = nn.Sequential(
         
     | 
| 259 | 
         
            +
                        nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
         
     | 
| 260 | 
         
            +
                        nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
         
     | 
| 261 | 
         
            +
                    self.conv3 = nn.Sequential(
         
     | 
| 262 | 
         
            +
                        nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
         
     | 
| 263 | 
         
            +
                        nn.Conv3d(out_channels, in_channels, th_kernel_shape, padding=th_padding_shape))
         
     | 
| 264 | 
         
            +
                    self.conv4 = nn.Sequential(
         
     | 
| 265 | 
         
            +
                        nn.GroupNorm(32, out_channels), nn.SiLU(), nn.Dropout(dropout),
         
     | 
| 266 | 
         
            +
                        nn.Conv3d(out_channels, in_channels, tw_kernel_shape, padding=tw_padding_shape))
         
     | 
| 267 | 
         
            +
             
     | 
| 268 | 
         
            +
                    # zero out the last layer params,so the conv block is identity
         
     | 
| 269 | 
         
            +
                    nn.init.zeros_(self.conv4[-1].weight)
         
     | 
| 270 | 
         
            +
                    nn.init.zeros_(self.conv4[-1].bias)
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                def forward(self, x):
         
     | 
| 273 | 
         
            +
                    identity = x
         
     | 
| 274 | 
         
            +
                    x = self.conv1(x)
         
     | 
| 275 | 
         
            +
                    x = self.conv2(x)
         
     | 
| 276 | 
         
            +
                    x = self.conv3(x)
         
     | 
| 277 | 
         
            +
                    x = self.conv4(x)
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    return identity + x
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
            class UNetModel(nn.Module):
         
     | 
| 282 | 
         
            +
                """
         
     | 
| 283 | 
         
            +
                The full UNet model with attention and timestep embedding.
         
     | 
| 284 | 
         
            +
                :param in_channels: in_channels in the input Tensor.
         
     | 
| 285 | 
         
            +
                :param model_channels: base channel count for the model.
         
     | 
| 286 | 
         
            +
                :param out_channels: channels in the output Tensor.
         
     | 
| 287 | 
         
            +
                :param num_res_blocks: number of residual blocks per downsample.
         
     | 
| 288 | 
         
            +
                :param attention_resolutions: a collection of downsample rates at which
         
     | 
| 289 | 
         
            +
                    attention will take place. May be a set, list, or tuple.
         
     | 
| 290 | 
         
            +
                    For example, if this contains 4, then at 4x downsampling, attention
         
     | 
| 291 | 
         
            +
                    will be used.
         
     | 
| 292 | 
         
            +
                :param dropout: the dropout probability.
         
     | 
| 293 | 
         
            +
                :param channel_mult: channel multiplier for each level of the UNet.
         
     | 
| 294 | 
         
            +
                :param conv_resample: if True, use learned convolutions for upsampling and
         
     | 
| 295 | 
         
            +
                    downsampling.
         
     | 
| 296 | 
         
            +
                :param dims: determines if the signal is 1D, 2D, or 3D.
         
     | 
| 297 | 
         
            +
                :param num_classes: if specified (as an int), then this model will be
         
     | 
| 298 | 
         
            +
                    class-conditional with `num_classes` classes.
         
     | 
| 299 | 
         
            +
                :param use_checkpoint: use gradient checkpointing to reduce memory usage.
         
     | 
| 300 | 
         
            +
                :param num_heads: the number of attention heads in each attention layer.
         
     | 
| 301 | 
         
            +
                :param num_heads_channels: if specified, ignore num_heads and instead use
         
     | 
| 302 | 
         
            +
                                           a fixed channel width per attention head.
         
     | 
| 303 | 
         
            +
                :param num_heads_upsample: works with num_heads to set a different number
         
     | 
| 304 | 
         
            +
                                           of heads for upsampling. Deprecated.
         
     | 
| 305 | 
         
            +
                :param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
         
     | 
| 306 | 
         
            +
                :param resblock_updown: use residual blocks for up/downsampling.
         
     | 
| 307 | 
         
            +
                :param use_new_attention_order: use a different attention pattern for potentially
         
     | 
| 308 | 
         
            +
                                                increased efficiency.
         
     | 
| 309 | 
         
            +
                """
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                def __init__(self,
         
     | 
| 312 | 
         
            +
                             in_channels,
         
     | 
| 313 | 
         
            +
                             model_channels,
         
     | 
| 314 | 
         
            +
                             out_channels,
         
     | 
| 315 | 
         
            +
                             num_res_blocks,
         
     | 
| 316 | 
         
            +
                             attention_resolutions,
         
     | 
| 317 | 
         
            +
                             dropout=0.0,
         
     | 
| 318 | 
         
            +
                             channel_mult=(1, 2, 4, 8),
         
     | 
| 319 | 
         
            +
                             conv_resample=True,
         
     | 
| 320 | 
         
            +
                             dims=2,
         
     | 
| 321 | 
         
            +
                             context_dim=None,
         
     | 
| 322 | 
         
            +
                             use_scale_shift_norm=False,
         
     | 
| 323 | 
         
            +
                             resblock_updown=False,
         
     | 
| 324 | 
         
            +
                             num_heads=-1,
         
     | 
| 325 | 
         
            +
                             num_head_channels=-1,
         
     | 
| 326 | 
         
            +
                             transformer_depth=1,
         
     | 
| 327 | 
         
            +
                             use_linear=False,
         
     | 
| 328 | 
         
            +
                             use_checkpoint=False,
         
     | 
| 329 | 
         
            +
                             temporal_conv=False,
         
     | 
| 330 | 
         
            +
                             tempspatial_aware=False,
         
     | 
| 331 | 
         
            +
                             temporal_attention=True,
         
     | 
| 332 | 
         
            +
                             use_relative_position=True,
         
     | 
| 333 | 
         
            +
                             use_causal_attention=False,
         
     | 
| 334 | 
         
            +
                             temporal_length=None,
         
     | 
| 335 | 
         
            +
                             use_fp16=False,
         
     | 
| 336 | 
         
            +
                             addition_attention=False,
         
     | 
| 337 | 
         
            +
                             temporal_selfatt_only=True,
         
     | 
| 338 | 
         
            +
                             image_cross_attention=False,
         
     | 
| 339 | 
         
            +
                             image_cross_attention_scale_learnable=False,
         
     | 
| 340 | 
         
            +
                             default_fs=4,
         
     | 
| 341 | 
         
            +
                             fs_condition=False,
         
     | 
| 342 | 
         
            +
                            ):
         
     | 
| 343 | 
         
            +
                    super(UNetModel, self).__init__()
         
     | 
| 344 | 
         
            +
                    if num_heads == -1:
         
     | 
| 345 | 
         
            +
                        assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 346 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 347 | 
         
            +
                        assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    self.in_channels = in_channels
         
     | 
| 350 | 
         
            +
                    self.model_channels = model_channels
         
     | 
| 351 | 
         
            +
                    self.out_channels = out_channels
         
     | 
| 352 | 
         
            +
                    self.num_res_blocks = num_res_blocks
         
     | 
| 353 | 
         
            +
                    self.attention_resolutions = attention_resolutions
         
     | 
| 354 | 
         
            +
                    self.dropout = dropout
         
     | 
| 355 | 
         
            +
                    self.channel_mult = channel_mult
         
     | 
| 356 | 
         
            +
                    self.conv_resample = conv_resample
         
     | 
| 357 | 
         
            +
                    self.temporal_attention = temporal_attention
         
     | 
| 358 | 
         
            +
                    time_embed_dim = model_channels * 4
         
     | 
| 359 | 
         
            +
                    self.use_checkpoint = use_checkpoint
         
     | 
| 360 | 
         
            +
                    self.dtype = torch.float16 if use_fp16 else torch.float32
         
     | 
| 361 | 
         
            +
                    temporal_self_att_only = True
         
     | 
| 362 | 
         
            +
                    self.addition_attention = addition_attention
         
     | 
| 363 | 
         
            +
                    self.temporal_length = temporal_length
         
     | 
| 364 | 
         
            +
                    self.image_cross_attention = image_cross_attention
         
     | 
| 365 | 
         
            +
                    self.image_cross_attention_scale_learnable = image_cross_attention_scale_learnable
         
     | 
| 366 | 
         
            +
                    self.default_fs = default_fs
         
     | 
| 367 | 
         
            +
                    self.fs_condition = fs_condition
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
                    ## Time embedding blocks
         
     | 
| 370 | 
         
            +
                    self.time_embed = nn.Sequential(
         
     | 
| 371 | 
         
            +
                        linear(model_channels, time_embed_dim),
         
     | 
| 372 | 
         
            +
                        nn.SiLU(),
         
     | 
| 373 | 
         
            +
                        linear(time_embed_dim, time_embed_dim),
         
     | 
| 374 | 
         
            +
                    )
         
     | 
| 375 | 
         
            +
                    if fs_condition:
         
     | 
| 376 | 
         
            +
                        self.framestride_embed = nn.Sequential(
         
     | 
| 377 | 
         
            +
                            linear(model_channels, time_embed_dim),
         
     | 
| 378 | 
         
            +
                            nn.SiLU(),
         
     | 
| 379 | 
         
            +
                            linear(time_embed_dim, time_embed_dim),
         
     | 
| 380 | 
         
            +
                        )
         
     | 
| 381 | 
         
            +
                        nn.init.zeros_(self.framestride_embed[-1].weight)
         
     | 
| 382 | 
         
            +
                        nn.init.zeros_(self.framestride_embed[-1].bias)
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    ## Input Block
         
     | 
| 385 | 
         
            +
                    self.input_blocks = nn.ModuleList(
         
     | 
| 386 | 
         
            +
                        [
         
     | 
| 387 | 
         
            +
                            TimestepEmbedSequential(conv_nd(dims, in_channels, model_channels, 3, padding=1))
         
     | 
| 388 | 
         
            +
                        ]
         
     | 
| 389 | 
         
            +
                    )
         
     | 
| 390 | 
         
            +
                    if self.addition_attention:
         
     | 
| 391 | 
         
            +
                        self.init_attn=TimestepEmbedSequential(
         
     | 
| 392 | 
         
            +
                            TemporalTransformer(
         
     | 
| 393 | 
         
            +
                                model_channels,
         
     | 
| 394 | 
         
            +
                                n_heads=8,
         
     | 
| 395 | 
         
            +
                                d_head=num_head_channels,
         
     | 
| 396 | 
         
            +
                                depth=transformer_depth,
         
     | 
| 397 | 
         
            +
                                context_dim=context_dim,
         
     | 
| 398 | 
         
            +
                                use_checkpoint=use_checkpoint, only_self_att=temporal_selfatt_only, 
         
     | 
| 399 | 
         
            +
                                causal_attention=False, relative_position=use_relative_position, 
         
     | 
| 400 | 
         
            +
                                temporal_length=temporal_length))
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
                    input_block_chans = [model_channels]
         
     | 
| 403 | 
         
            +
                    ch = model_channels
         
     | 
| 404 | 
         
            +
                    ds = 1
         
     | 
| 405 | 
         
            +
                    for level, mult in enumerate(channel_mult):
         
     | 
| 406 | 
         
            +
                        for _ in range(num_res_blocks):
         
     | 
| 407 | 
         
            +
                            layers = [
         
     | 
| 408 | 
         
            +
                                ResBlock(ch, time_embed_dim, dropout,
         
     | 
| 409 | 
         
            +
                                    out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
         
     | 
| 410 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
         
     | 
| 411 | 
         
            +
                                    use_temporal_conv=temporal_conv
         
     | 
| 412 | 
         
            +
                                )
         
     | 
| 413 | 
         
            +
                            ]
         
     | 
| 414 | 
         
            +
                            ch = mult * model_channels
         
     | 
| 415 | 
         
            +
                            if ds in attention_resolutions:
         
     | 
| 416 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 417 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 418 | 
         
            +
                                else:
         
     | 
| 419 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 420 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 421 | 
         
            +
                                layers.append(
         
     | 
| 422 | 
         
            +
                                    SpatialTransformer(ch, num_heads, dim_head, 
         
     | 
| 423 | 
         
            +
                                        depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
         
     | 
| 424 | 
         
            +
                                        use_checkpoint=use_checkpoint, disable_self_attn=False, 
         
     | 
| 425 | 
         
            +
                                        video_length=temporal_length, image_cross_attention=self.image_cross_attention,
         
     | 
| 426 | 
         
            +
                                        image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable,                      
         
     | 
| 427 | 
         
            +
                                    )
         
     | 
| 428 | 
         
            +
                                )
         
     | 
| 429 | 
         
            +
                                if self.temporal_attention:
         
     | 
| 430 | 
         
            +
                                    layers.append(
         
     | 
| 431 | 
         
            +
                                        TemporalTransformer(ch, num_heads, dim_head,
         
     | 
| 432 | 
         
            +
                                            depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
         
     | 
| 433 | 
         
            +
                                            use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, 
         
     | 
| 434 | 
         
            +
                                            causal_attention=use_causal_attention, relative_position=use_relative_position, 
         
     | 
| 435 | 
         
            +
                                            temporal_length=temporal_length
         
     | 
| 436 | 
         
            +
                                        )
         
     | 
| 437 | 
         
            +
                                    )
         
     | 
| 438 | 
         
            +
                            self.input_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 439 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 440 | 
         
            +
                        if level != len(channel_mult) - 1:
         
     | 
| 441 | 
         
            +
                            out_ch = ch
         
     | 
| 442 | 
         
            +
                            self.input_blocks.append(
         
     | 
| 443 | 
         
            +
                                TimestepEmbedSequential(
         
     | 
| 444 | 
         
            +
                                    ResBlock(ch, time_embed_dim, dropout, 
         
     | 
| 445 | 
         
            +
                                        out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
         
     | 
| 446 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 447 | 
         
            +
                                        down=True
         
     | 
| 448 | 
         
            +
                                    )
         
     | 
| 449 | 
         
            +
                                    if resblock_updown
         
     | 
| 450 | 
         
            +
                                    else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         
     | 
| 451 | 
         
            +
                                )
         
     | 
| 452 | 
         
            +
                            )
         
     | 
| 453 | 
         
            +
                            ch = out_ch
         
     | 
| 454 | 
         
            +
                            input_block_chans.append(ch)
         
     | 
| 455 | 
         
            +
                            ds *= 2
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                    if num_head_channels == -1:
         
     | 
| 458 | 
         
            +
                        dim_head = ch // num_heads
         
     | 
| 459 | 
         
            +
                    else:
         
     | 
| 460 | 
         
            +
                        num_heads = ch // num_head_channels
         
     | 
| 461 | 
         
            +
                        dim_head = num_head_channels
         
     | 
| 462 | 
         
            +
                    layers = [
         
     | 
| 463 | 
         
            +
                        ResBlock(ch, time_embed_dim, dropout,
         
     | 
| 464 | 
         
            +
                            dims=dims, use_checkpoint=use_checkpoint,
         
     | 
| 465 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
         
     | 
| 466 | 
         
            +
                            use_temporal_conv=temporal_conv
         
     | 
| 467 | 
         
            +
                        ),
         
     | 
| 468 | 
         
            +
                        SpatialTransformer(ch, num_heads, dim_head, 
         
     | 
| 469 | 
         
            +
                            depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
         
     | 
| 470 | 
         
            +
                            use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length, 
         
     | 
| 471 | 
         
            +
                            image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable                
         
     | 
| 472 | 
         
            +
                        )
         
     | 
| 473 | 
         
            +
                    ]
         
     | 
| 474 | 
         
            +
                    if self.temporal_attention:
         
     | 
| 475 | 
         
            +
                        layers.append(
         
     | 
| 476 | 
         
            +
                            TemporalTransformer(ch, num_heads, dim_head,
         
     | 
| 477 | 
         
            +
                                depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
         
     | 
| 478 | 
         
            +
                                use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, 
         
     | 
| 479 | 
         
            +
                                causal_attention=use_causal_attention, relative_position=use_relative_position, 
         
     | 
| 480 | 
         
            +
                                temporal_length=temporal_length
         
     | 
| 481 | 
         
            +
                            )
         
     | 
| 482 | 
         
            +
                        )
         
     | 
| 483 | 
         
            +
                    layers.append(
         
     | 
| 484 | 
         
            +
                        ResBlock(ch, time_embed_dim, dropout,
         
     | 
| 485 | 
         
            +
                            dims=dims, use_checkpoint=use_checkpoint,
         
     | 
| 486 | 
         
            +
                            use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware, 
         
     | 
| 487 | 
         
            +
                            use_temporal_conv=temporal_conv
         
     | 
| 488 | 
         
            +
                            )
         
     | 
| 489 | 
         
            +
                    )
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                    ## Middle Block
         
     | 
| 492 | 
         
            +
                    self.middle_block = TimestepEmbedSequential(*layers)
         
     | 
| 493 | 
         
            +
             
     | 
| 494 | 
         
            +
                    ## Output Block
         
     | 
| 495 | 
         
            +
                    self.output_blocks = nn.ModuleList([])
         
     | 
| 496 | 
         
            +
                    for level, mult in list(enumerate(channel_mult))[::-1]:
         
     | 
| 497 | 
         
            +
                        for i in range(num_res_blocks + 1):
         
     | 
| 498 | 
         
            +
                            ich = input_block_chans.pop()
         
     | 
| 499 | 
         
            +
                            layers = [
         
     | 
| 500 | 
         
            +
                                ResBlock(ch + ich, time_embed_dim, dropout,
         
     | 
| 501 | 
         
            +
                                    out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint,
         
     | 
| 502 | 
         
            +
                                    use_scale_shift_norm=use_scale_shift_norm, tempspatial_aware=tempspatial_aware,
         
     | 
| 503 | 
         
            +
                                    use_temporal_conv=temporal_conv
         
     | 
| 504 | 
         
            +
                                )
         
     | 
| 505 | 
         
            +
                            ]
         
     | 
| 506 | 
         
            +
                            ch = model_channels * mult
         
     | 
| 507 | 
         
            +
                            if ds in attention_resolutions:
         
     | 
| 508 | 
         
            +
                                if num_head_channels == -1:
         
     | 
| 509 | 
         
            +
                                    dim_head = ch // num_heads
         
     | 
| 510 | 
         
            +
                                else:
         
     | 
| 511 | 
         
            +
                                    num_heads = ch // num_head_channels
         
     | 
| 512 | 
         
            +
                                    dim_head = num_head_channels
         
     | 
| 513 | 
         
            +
                                layers.append(
         
     | 
| 514 | 
         
            +
                                    SpatialTransformer(ch, num_heads, dim_head, 
         
     | 
| 515 | 
         
            +
                                        depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
         
     | 
| 516 | 
         
            +
                                        use_checkpoint=use_checkpoint, disable_self_attn=False, video_length=temporal_length,
         
     | 
| 517 | 
         
            +
                                        image_cross_attention=self.image_cross_attention,image_cross_attention_scale_learnable=self.image_cross_attention_scale_learnable    
         
     | 
| 518 | 
         
            +
                                    )
         
     | 
| 519 | 
         
            +
                                )
         
     | 
| 520 | 
         
            +
                                if self.temporal_attention:
         
     | 
| 521 | 
         
            +
                                    layers.append(
         
     | 
| 522 | 
         
            +
                                        TemporalTransformer(ch, num_heads, dim_head,
         
     | 
| 523 | 
         
            +
                                            depth=transformer_depth, context_dim=context_dim, use_linear=use_linear,
         
     | 
| 524 | 
         
            +
                                            use_checkpoint=use_checkpoint, only_self_att=temporal_self_att_only, 
         
     | 
| 525 | 
         
            +
                                            causal_attention=use_causal_attention, relative_position=use_relative_position, 
         
     | 
| 526 | 
         
            +
                                            temporal_length=temporal_length
         
     | 
| 527 | 
         
            +
                                        )
         
     | 
| 528 | 
         
            +
                                    )
         
     | 
| 529 | 
         
            +
                            if level and i == num_res_blocks:
         
     | 
| 530 | 
         
            +
                                out_ch = ch
         
     | 
| 531 | 
         
            +
                                layers.append(
         
     | 
| 532 | 
         
            +
                                    ResBlock(ch, time_embed_dim, dropout,
         
     | 
| 533 | 
         
            +
                                        out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint,
         
     | 
| 534 | 
         
            +
                                        use_scale_shift_norm=use_scale_shift_norm,
         
     | 
| 535 | 
         
            +
                                        up=True
         
     | 
| 536 | 
         
            +
                                    )
         
     | 
| 537 | 
         
            +
                                    if resblock_updown
         
     | 
| 538 | 
         
            +
                                    else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
         
     | 
| 539 | 
         
            +
                                )
         
     | 
| 540 | 
         
            +
                                ds //= 2
         
     | 
| 541 | 
         
            +
                            self.output_blocks.append(TimestepEmbedSequential(*layers))
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
                    self.out = nn.Sequential(
         
     | 
| 544 | 
         
            +
                        normalization(ch),
         
     | 
| 545 | 
         
            +
                        nn.SiLU(),
         
     | 
| 546 | 
         
            +
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         
     | 
| 547 | 
         
            +
                    )
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
                def forward(self, x, timesteps, context=None, features_adapter=None, fs=None, **kwargs):
         
     | 
| 550 | 
         
            +
                    b,_,t,_,_ = x.shape
         
     | 
| 551 | 
         
            +
                    t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).type(x.dtype)
         
     | 
| 552 | 
         
            +
                    emb = self.time_embed(t_emb)
         
     | 
| 553 | 
         
            +
                    
         
     | 
| 554 | 
         
            +
                    ## repeat t times for context [(b t) 77 768] & time embedding
         
     | 
| 555 | 
         
            +
                    ## check if we use per-frame image conditioning
         
     | 
| 556 | 
         
            +
                    _, l_context, _ = context.shape
         
     | 
| 557 | 
         
            +
                    if l_context == 77 + t*16: ## !!! HARD CODE here
         
     | 
| 558 | 
         
            +
                        context_text, context_img = context[:,:77,:], context[:,77:,:]
         
     | 
| 559 | 
         
            +
                        context_text = context_text.repeat_interleave(repeats=t, dim=0)
         
     | 
| 560 | 
         
            +
                        context_img = rearrange(context_img, 'b (t l) c -> (b t) l c', t=t)
         
     | 
| 561 | 
         
            +
                        context = torch.cat([context_text, context_img], dim=1)
         
     | 
| 562 | 
         
            +
                    else:
         
     | 
| 563 | 
         
            +
                        context = context.repeat_interleave(repeats=t, dim=0)
         
     | 
| 564 | 
         
            +
                    emb = emb.repeat_interleave(repeats=t, dim=0)
         
     | 
| 565 | 
         
            +
                    
         
     | 
| 566 | 
         
            +
                    ## always in shape (b t) c h w, except for temporal layer
         
     | 
| 567 | 
         
            +
                    x = rearrange(x, 'b c t h w -> (b t) c h w')
         
     | 
| 568 | 
         
            +
             
     | 
| 569 | 
         
            +
                    ## combine emb
         
     | 
| 570 | 
         
            +
                    if self.fs_condition:
         
     | 
| 571 | 
         
            +
                        if fs is None:
         
     | 
| 572 | 
         
            +
                            fs = torch.tensor(
         
     | 
| 573 | 
         
            +
                                [self.default_fs] * b, dtype=torch.long, device=x.device)
         
     | 
| 574 | 
         
            +
                        fs_emb = timestep_embedding(fs, self.model_channels, repeat_only=False).type(x.dtype)
         
     | 
| 575 | 
         
            +
                        fs_embed = self.framestride_embed(fs_emb)
         
     | 
| 576 | 
         
            +
                        fs_embed = fs_embed.repeat_interleave(repeats=t, dim=0)
         
     | 
| 577 | 
         
            +
                        emb = emb + fs_embed
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
                    h = x.type(self.dtype)
         
     | 
| 580 | 
         
            +
                    adapter_idx = 0
         
     | 
| 581 | 
         
            +
                    hs = []
         
     | 
| 582 | 
         
            +
                    for id, module in enumerate(self.input_blocks):
         
     | 
| 583 | 
         
            +
                        h = module(h, emb, context=context, batch_size=b)
         
     | 
| 584 | 
         
            +
                        if id ==0 and self.addition_attention:
         
     | 
| 585 | 
         
            +
                            h = self.init_attn(h, emb, context=context, batch_size=b)
         
     | 
| 586 | 
         
            +
                        ## plug-in adapter features
         
     | 
| 587 | 
         
            +
                        if ((id+1)%3 == 0) and features_adapter is not None:
         
     | 
| 588 | 
         
            +
                            h = h + features_adapter[adapter_idx]
         
     | 
| 589 | 
         
            +
                            adapter_idx += 1
         
     | 
| 590 | 
         
            +
                        hs.append(h)
         
     | 
| 591 | 
         
            +
                    if features_adapter is not None:
         
     | 
| 592 | 
         
            +
                        assert len(features_adapter)==adapter_idx, 'Wrong features_adapter'
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                    h = self.middle_block(h, emb, context=context, batch_size=b)
         
     | 
| 595 | 
         
            +
                    for module in self.output_blocks:
         
     | 
| 596 | 
         
            +
                        h = torch.cat([h, hs.pop()], dim=1)
         
     | 
| 597 | 
         
            +
                        h = module(h, emb, context=context, batch_size=b)
         
     | 
| 598 | 
         
            +
                    h = h.type(x.dtype)
         
     | 
| 599 | 
         
            +
                    y = self.out(h)
         
     | 
| 600 | 
         
            +
                    
         
     | 
| 601 | 
         
            +
                    # reshape back to (b c t h w)
         
     | 
| 602 | 
         
            +
                    y = rearrange(y, '(b t) c h w -> b c t h w', b=b)
         
     | 
| 603 | 
         
            +
                    return y
         
     | 
    	
        lvdm/modules/x_transformer.py
    ADDED
    
    | 
         @@ -0,0 +1,639 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers"""
         
     | 
| 2 | 
         
            +
            from functools import partial
         
     | 
| 3 | 
         
            +
            from inspect import isfunction
         
     | 
| 4 | 
         
            +
            from collections import namedtuple
         
     | 
| 5 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 6 | 
         
            +
            import torch
         
     | 
| 7 | 
         
            +
            from torch import nn, einsum
         
     | 
| 8 | 
         
            +
            import torch.nn.functional as F
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            # constants
         
     | 
| 11 | 
         
            +
            DEFAULT_DIM_HEAD = 64
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            Intermediates = namedtuple('Intermediates', [
         
     | 
| 14 | 
         
            +
                'pre_softmax_attn',
         
     | 
| 15 | 
         
            +
                'post_softmax_attn'
         
     | 
| 16 | 
         
            +
            ])
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            LayerIntermediates = namedtuple('Intermediates', [
         
     | 
| 19 | 
         
            +
                'hiddens',
         
     | 
| 20 | 
         
            +
                'attn_intermediates'
         
     | 
| 21 | 
         
            +
            ])
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            class AbsolutePositionalEmbedding(nn.Module):
         
     | 
| 25 | 
         
            +
                def __init__(self, dim, max_seq_len):
         
     | 
| 26 | 
         
            +
                    super().__init__()
         
     | 
| 27 | 
         
            +
                    self.emb = nn.Embedding(max_seq_len, dim)
         
     | 
| 28 | 
         
            +
                    self.init_()
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                def init_(self):
         
     | 
| 31 | 
         
            +
                    nn.init.normal_(self.emb.weight, std=0.02)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                def forward(self, x):
         
     | 
| 34 | 
         
            +
                    n = torch.arange(x.shape[1], device=x.device)
         
     | 
| 35 | 
         
            +
                    return self.emb(n)[None, :, :]
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            class FixedPositionalEmbedding(nn.Module):
         
     | 
| 39 | 
         
            +
                def __init__(self, dim):
         
     | 
| 40 | 
         
            +
                    super().__init__()
         
     | 
| 41 | 
         
            +
                    inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
         
     | 
| 42 | 
         
            +
                    self.register_buffer('inv_freq', inv_freq)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                def forward(self, x, seq_dim=1, offset=0):
         
     | 
| 45 | 
         
            +
                    t = torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) + offset
         
     | 
| 46 | 
         
            +
                    sinusoid_inp = torch.einsum('i , j -> i j', t, self.inv_freq)
         
     | 
| 47 | 
         
            +
                    emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
         
     | 
| 48 | 
         
            +
                    return emb[None, :, :]
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            # helpers
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
            def exists(val):
         
     | 
| 54 | 
         
            +
                return val is not None
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            def default(val, d):
         
     | 
| 58 | 
         
            +
                if exists(val):
         
     | 
| 59 | 
         
            +
                    return val
         
     | 
| 60 | 
         
            +
                return d() if isfunction(d) else d
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            def always(val):
         
     | 
| 64 | 
         
            +
                def inner(*args, **kwargs):
         
     | 
| 65 | 
         
            +
                    return val
         
     | 
| 66 | 
         
            +
                return inner
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            def not_equals(val):
         
     | 
| 70 | 
         
            +
                def inner(x):
         
     | 
| 71 | 
         
            +
                    return x != val
         
     | 
| 72 | 
         
            +
                return inner
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def equals(val):
         
     | 
| 76 | 
         
            +
                def inner(x):
         
     | 
| 77 | 
         
            +
                    return x == val
         
     | 
| 78 | 
         
            +
                return inner
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
            def max_neg_value(tensor):
         
     | 
| 82 | 
         
            +
                return -torch.finfo(tensor.dtype).max
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            # keyword argument helpers
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
            def pick_and_pop(keys, d):
         
     | 
| 88 | 
         
            +
                values = list(map(lambda key: d.pop(key), keys))
         
     | 
| 89 | 
         
            +
                return dict(zip(keys, values))
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            def group_dict_by_key(cond, d):
         
     | 
| 93 | 
         
            +
                return_val = [dict(), dict()]
         
     | 
| 94 | 
         
            +
                for key in d.keys():
         
     | 
| 95 | 
         
            +
                    match = bool(cond(key))
         
     | 
| 96 | 
         
            +
                    ind = int(not match)
         
     | 
| 97 | 
         
            +
                    return_val[ind][key] = d[key]
         
     | 
| 98 | 
         
            +
                return (*return_val,)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            def string_begins_with(prefix, str):
         
     | 
| 102 | 
         
            +
                return str.startswith(prefix)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
            def group_by_key_prefix(prefix, d):
         
     | 
| 106 | 
         
            +
                return group_dict_by_key(partial(string_begins_with, prefix), d)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
            def groupby_prefix_and_trim(prefix, d):
         
     | 
| 110 | 
         
            +
                kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
         
     | 
| 111 | 
         
            +
                kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
         
     | 
| 112 | 
         
            +
                return kwargs_without_prefix, kwargs
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            # classes
         
     | 
| 116 | 
         
            +
            class Scale(nn.Module):
         
     | 
| 117 | 
         
            +
                def __init__(self, value, fn):
         
     | 
| 118 | 
         
            +
                    super().__init__()
         
     | 
| 119 | 
         
            +
                    self.value = value
         
     | 
| 120 | 
         
            +
                    self.fn = fn
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                def forward(self, x, **kwargs):
         
     | 
| 123 | 
         
            +
                    x, *rest = self.fn(x, **kwargs)
         
     | 
| 124 | 
         
            +
                    return (x * self.value, *rest)
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
             
     | 
| 127 | 
         
            +
            class Rezero(nn.Module):
         
     | 
| 128 | 
         
            +
                def __init__(self, fn):
         
     | 
| 129 | 
         
            +
                    super().__init__()
         
     | 
| 130 | 
         
            +
                    self.fn = fn
         
     | 
| 131 | 
         
            +
                    self.g = nn.Parameter(torch.zeros(1))
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                def forward(self, x, **kwargs):
         
     | 
| 134 | 
         
            +
                    x, *rest = self.fn(x, **kwargs)
         
     | 
| 135 | 
         
            +
                    return (x * self.g, *rest)
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
            class ScaleNorm(nn.Module):
         
     | 
| 139 | 
         
            +
                def __init__(self, dim, eps=1e-5):
         
     | 
| 140 | 
         
            +
                    super().__init__()
         
     | 
| 141 | 
         
            +
                    self.scale = dim ** -0.5
         
     | 
| 142 | 
         
            +
                    self.eps = eps
         
     | 
| 143 | 
         
            +
                    self.g = nn.Parameter(torch.ones(1))
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                def forward(self, x):
         
     | 
| 146 | 
         
            +
                    norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
         
     | 
| 147 | 
         
            +
                    return x / norm.clamp(min=self.eps) * self.g
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
            class RMSNorm(nn.Module):
         
     | 
| 151 | 
         
            +
                def __init__(self, dim, eps=1e-8):
         
     | 
| 152 | 
         
            +
                    super().__init__()
         
     | 
| 153 | 
         
            +
                    self.scale = dim ** -0.5
         
     | 
| 154 | 
         
            +
                    self.eps = eps
         
     | 
| 155 | 
         
            +
                    self.g = nn.Parameter(torch.ones(dim))
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                def forward(self, x):
         
     | 
| 158 | 
         
            +
                    norm = torch.norm(x, dim=-1, keepdim=True) * self.scale
         
     | 
| 159 | 
         
            +
                    return x / norm.clamp(min=self.eps) * self.g
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
            class Residual(nn.Module):
         
     | 
| 163 | 
         
            +
                def forward(self, x, residual):
         
     | 
| 164 | 
         
            +
                    return x + residual
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
            class GRUGating(nn.Module):
         
     | 
| 168 | 
         
            +
                def __init__(self, dim):
         
     | 
| 169 | 
         
            +
                    super().__init__()
         
     | 
| 170 | 
         
            +
                    self.gru = nn.GRUCell(dim, dim)
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                def forward(self, x, residual):
         
     | 
| 173 | 
         
            +
                    gated_output = self.gru(
         
     | 
| 174 | 
         
            +
                        rearrange(x, 'b n d -> (b n) d'),
         
     | 
| 175 | 
         
            +
                        rearrange(residual, 'b n d -> (b n) d')
         
     | 
| 176 | 
         
            +
                    )
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    return gated_output.reshape_as(x)
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
            # feedforward
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
            class GEGLU(nn.Module):
         
     | 
| 184 | 
         
            +
                def __init__(self, dim_in, dim_out):
         
     | 
| 185 | 
         
            +
                    super().__init__()
         
     | 
| 186 | 
         
            +
                    self.proj = nn.Linear(dim_in, dim_out * 2)
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                def forward(self, x):
         
     | 
| 189 | 
         
            +
                    x, gate = self.proj(x).chunk(2, dim=-1)
         
     | 
| 190 | 
         
            +
                    return x * F.gelu(gate)
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
            class FeedForward(nn.Module):
         
     | 
| 194 | 
         
            +
                def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.):
         
     | 
| 195 | 
         
            +
                    super().__init__()
         
     | 
| 196 | 
         
            +
                    inner_dim = int(dim * mult)
         
     | 
| 197 | 
         
            +
                    dim_out = default(dim_out, dim)
         
     | 
| 198 | 
         
            +
                    project_in = nn.Sequential(
         
     | 
| 199 | 
         
            +
                        nn.Linear(dim, inner_dim),
         
     | 
| 200 | 
         
            +
                        nn.GELU()
         
     | 
| 201 | 
         
            +
                    ) if not glu else GEGLU(dim, inner_dim)
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    self.net = nn.Sequential(
         
     | 
| 204 | 
         
            +
                        project_in,
         
     | 
| 205 | 
         
            +
                        nn.Dropout(dropout),
         
     | 
| 206 | 
         
            +
                        nn.Linear(inner_dim, dim_out)
         
     | 
| 207 | 
         
            +
                    )
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                def forward(self, x):
         
     | 
| 210 | 
         
            +
                    return self.net(x)
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
            # attention.
         
     | 
| 214 | 
         
            +
            class Attention(nn.Module):
         
     | 
| 215 | 
         
            +
                def __init__(
         
     | 
| 216 | 
         
            +
                        self,
         
     | 
| 217 | 
         
            +
                        dim,
         
     | 
| 218 | 
         
            +
                        dim_head=DEFAULT_DIM_HEAD,
         
     | 
| 219 | 
         
            +
                        heads=8,
         
     | 
| 220 | 
         
            +
                        causal=False,
         
     | 
| 221 | 
         
            +
                        mask=None,
         
     | 
| 222 | 
         
            +
                        talking_heads=False,
         
     | 
| 223 | 
         
            +
                        sparse_topk=None,
         
     | 
| 224 | 
         
            +
                        use_entmax15=False,
         
     | 
| 225 | 
         
            +
                        num_mem_kv=0,
         
     | 
| 226 | 
         
            +
                        dropout=0.,
         
     | 
| 227 | 
         
            +
                        on_attn=False
         
     | 
| 228 | 
         
            +
                ):
         
     | 
| 229 | 
         
            +
                    super().__init__()
         
     | 
| 230 | 
         
            +
                    if use_entmax15:
         
     | 
| 231 | 
         
            +
                        raise NotImplementedError("Check out entmax activation instead of softmax activation!")
         
     | 
| 232 | 
         
            +
                    self.scale = dim_head ** -0.5
         
     | 
| 233 | 
         
            +
                    self.heads = heads
         
     | 
| 234 | 
         
            +
                    self.causal = causal
         
     | 
| 235 | 
         
            +
                    self.mask = mask
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    inner_dim = dim_head * heads
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    self.to_q = nn.Linear(dim, inner_dim, bias=False)
         
     | 
| 240 | 
         
            +
                    self.to_k = nn.Linear(dim, inner_dim, bias=False)
         
     | 
| 241 | 
         
            +
                    self.to_v = nn.Linear(dim, inner_dim, bias=False)
         
     | 
| 242 | 
         
            +
                    self.dropout = nn.Dropout(dropout)
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    # talking heads
         
     | 
| 245 | 
         
            +
                    self.talking_heads = talking_heads
         
     | 
| 246 | 
         
            +
                    if talking_heads:
         
     | 
| 247 | 
         
            +
                        self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads))
         
     | 
| 248 | 
         
            +
                        self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads))
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    # explicit topk sparse attention
         
     | 
| 251 | 
         
            +
                    self.sparse_topk = sparse_topk
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                    # entmax
         
     | 
| 254 | 
         
            +
                    #self.attn_fn = entmax15 if use_entmax15 else F.softmax
         
     | 
| 255 | 
         
            +
                    self.attn_fn = F.softmax
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    # add memory key / values
         
     | 
| 258 | 
         
            +
                    self.num_mem_kv = num_mem_kv
         
     | 
| 259 | 
         
            +
                    if num_mem_kv > 0:
         
     | 
| 260 | 
         
            +
                        self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
         
     | 
| 261 | 
         
            +
                        self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                    # attention on attention
         
     | 
| 264 | 
         
            +
                    self.attn_on_attn = on_attn
         
     | 
| 265 | 
         
            +
                    self.to_out = nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) if on_attn else nn.Linear(inner_dim, dim)
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                def forward(
         
     | 
| 268 | 
         
            +
                        self,
         
     | 
| 269 | 
         
            +
                        x,
         
     | 
| 270 | 
         
            +
                        context=None,
         
     | 
| 271 | 
         
            +
                        mask=None,
         
     | 
| 272 | 
         
            +
                        context_mask=None,
         
     | 
| 273 | 
         
            +
                        rel_pos=None,
         
     | 
| 274 | 
         
            +
                        sinusoidal_emb=None,
         
     | 
| 275 | 
         
            +
                        prev_attn=None,
         
     | 
| 276 | 
         
            +
                        mem=None
         
     | 
| 277 | 
         
            +
                ):
         
     | 
| 278 | 
         
            +
                    b, n, _, h, talking_heads, device = *x.shape, self.heads, self.talking_heads, x.device
         
     | 
| 279 | 
         
            +
                    kv_input = default(context, x)
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    q_input = x
         
     | 
| 282 | 
         
            +
                    k_input = kv_input
         
     | 
| 283 | 
         
            +
                    v_input = kv_input
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                    if exists(mem):
         
     | 
| 286 | 
         
            +
                        k_input = torch.cat((mem, k_input), dim=-2)
         
     | 
| 287 | 
         
            +
                        v_input = torch.cat((mem, v_input), dim=-2)
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    if exists(sinusoidal_emb):
         
     | 
| 290 | 
         
            +
                        # in shortformer, the query would start at a position offset depending on the past cached memory
         
     | 
| 291 | 
         
            +
                        offset = k_input.shape[-2] - q_input.shape[-2]
         
     | 
| 292 | 
         
            +
                        q_input = q_input + sinusoidal_emb(q_input, offset=offset)
         
     | 
| 293 | 
         
            +
                        k_input = k_input + sinusoidal_emb(k_input)
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                    q = self.to_q(q_input)
         
     | 
| 296 | 
         
            +
                    k = self.to_k(k_input)
         
     | 
| 297 | 
         
            +
                    v = self.to_v(v_input)
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
                    q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=h), (q, k, v))
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                    input_mask = None
         
     | 
| 302 | 
         
            +
                    if any(map(exists, (mask, context_mask))):
         
     | 
| 303 | 
         
            +
                        q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool())
         
     | 
| 304 | 
         
            +
                        k_mask = q_mask if not exists(context) else context_mask
         
     | 
| 305 | 
         
            +
                        k_mask = default(k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool())
         
     | 
| 306 | 
         
            +
                        q_mask = rearrange(q_mask, 'b i -> b () i ()')
         
     | 
| 307 | 
         
            +
                        k_mask = rearrange(k_mask, 'b j -> b () () j')
         
     | 
| 308 | 
         
            +
                        input_mask = q_mask * k_mask
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                    if self.num_mem_kv > 0:
         
     | 
| 311 | 
         
            +
                        mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b=b), (self.mem_k, self.mem_v))
         
     | 
| 312 | 
         
            +
                        k = torch.cat((mem_k, k), dim=-2)
         
     | 
| 313 | 
         
            +
                        v = torch.cat((mem_v, v), dim=-2)
         
     | 
| 314 | 
         
            +
                        if exists(input_mask):
         
     | 
| 315 | 
         
            +
                            input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True)
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale
         
     | 
| 318 | 
         
            +
                    mask_value = max_neg_value(dots)
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                    if exists(prev_attn):
         
     | 
| 321 | 
         
            +
                        dots = dots + prev_attn
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                    pre_softmax_attn = dots
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                    if talking_heads:
         
     | 
| 326 | 
         
            +
                        dots = einsum('b h i j, h k -> b k i j', dots, self.pre_softmax_proj).contiguous()
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                    if exists(rel_pos):
         
     | 
| 329 | 
         
            +
                        dots = rel_pos(dots)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    if exists(input_mask):
         
     | 
| 332 | 
         
            +
                        dots.masked_fill_(~input_mask, mask_value)
         
     | 
| 333 | 
         
            +
                        del input_mask
         
     | 
| 334 | 
         
            +
             
     | 
| 335 | 
         
            +
                    if self.causal:
         
     | 
| 336 | 
         
            +
                        i, j = dots.shape[-2:]
         
     | 
| 337 | 
         
            +
                        r = torch.arange(i, device=device)
         
     | 
| 338 | 
         
            +
                        mask = rearrange(r, 'i -> () () i ()') < rearrange(r, 'j -> () () () j')
         
     | 
| 339 | 
         
            +
                        mask = F.pad(mask, (j - i, 0), value=False)
         
     | 
| 340 | 
         
            +
                        dots.masked_fill_(mask, mask_value)
         
     | 
| 341 | 
         
            +
                        del mask
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                    if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]:
         
     | 
| 344 | 
         
            +
                        top, _ = dots.topk(self.sparse_topk, dim=-1)
         
     | 
| 345 | 
         
            +
                        vk = top[..., -1].unsqueeze(-1).expand_as(dots)
         
     | 
| 346 | 
         
            +
                        mask = dots < vk
         
     | 
| 347 | 
         
            +
                        dots.masked_fill_(mask, mask_value)
         
     | 
| 348 | 
         
            +
                        del mask
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                    attn = self.attn_fn(dots, dim=-1)
         
     | 
| 351 | 
         
            +
                    post_softmax_attn = attn
         
     | 
| 352 | 
         
            +
             
     | 
| 353 | 
         
            +
                    attn = self.dropout(attn)
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
                    if talking_heads:
         
     | 
| 356 | 
         
            +
                        attn = einsum('b h i j, h k -> b k i j', attn, self.post_softmax_proj).contiguous()
         
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
                    out = einsum('b h i j, b h j d -> b h i d', attn, v)
         
     | 
| 359 | 
         
            +
                    out = rearrange(out, 'b h n d -> b n (h d)')
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    intermediates = Intermediates(
         
     | 
| 362 | 
         
            +
                        pre_softmax_attn=pre_softmax_attn,
         
     | 
| 363 | 
         
            +
                        post_softmax_attn=post_softmax_attn
         
     | 
| 364 | 
         
            +
                    )
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                    return self.to_out(out), intermediates
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
            class AttentionLayers(nn.Module):
         
     | 
| 370 | 
         
            +
                def __init__(
         
     | 
| 371 | 
         
            +
                        self,
         
     | 
| 372 | 
         
            +
                        dim,
         
     | 
| 373 | 
         
            +
                        depth,
         
     | 
| 374 | 
         
            +
                        heads=8,
         
     | 
| 375 | 
         
            +
                        causal=False,
         
     | 
| 376 | 
         
            +
                        cross_attend=False,
         
     | 
| 377 | 
         
            +
                        only_cross=False,
         
     | 
| 378 | 
         
            +
                        use_scalenorm=False,
         
     | 
| 379 | 
         
            +
                        use_rmsnorm=False,
         
     | 
| 380 | 
         
            +
                        use_rezero=False,
         
     | 
| 381 | 
         
            +
                        rel_pos_num_buckets=32,
         
     | 
| 382 | 
         
            +
                        rel_pos_max_distance=128,
         
     | 
| 383 | 
         
            +
                        position_infused_attn=False,
         
     | 
| 384 | 
         
            +
                        custom_layers=None,
         
     | 
| 385 | 
         
            +
                        sandwich_coef=None,
         
     | 
| 386 | 
         
            +
                        par_ratio=None,
         
     | 
| 387 | 
         
            +
                        residual_attn=False,
         
     | 
| 388 | 
         
            +
                        cross_residual_attn=False,
         
     | 
| 389 | 
         
            +
                        macaron=False,
         
     | 
| 390 | 
         
            +
                        pre_norm=True,
         
     | 
| 391 | 
         
            +
                        gate_residual=False,
         
     | 
| 392 | 
         
            +
                        **kwargs
         
     | 
| 393 | 
         
            +
                ):
         
     | 
| 394 | 
         
            +
                    super().__init__()
         
     | 
| 395 | 
         
            +
                    ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
         
     | 
| 396 | 
         
            +
                    attn_kwargs, _ = groupby_prefix_and_trim('attn_', kwargs)
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                    self.dim = dim
         
     | 
| 401 | 
         
            +
                    self.depth = depth
         
     | 
| 402 | 
         
            +
                    self.layers = nn.ModuleList([])
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
                    self.has_pos_emb = position_infused_attn
         
     | 
| 405 | 
         
            +
                    self.pia_pos_emb = FixedPositionalEmbedding(dim) if position_infused_attn else None
         
     | 
| 406 | 
         
            +
                    self.rotary_pos_emb = always(None)
         
     | 
| 407 | 
         
            +
             
     | 
| 408 | 
         
            +
                    assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
         
     | 
| 409 | 
         
            +
                    self.rel_pos = None
         
     | 
| 410 | 
         
            +
             
     | 
| 411 | 
         
            +
                    self.pre_norm = pre_norm
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                    self.residual_attn = residual_attn
         
     | 
| 414 | 
         
            +
                    self.cross_residual_attn = cross_residual_attn
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm
         
     | 
| 417 | 
         
            +
                    norm_class = RMSNorm if use_rmsnorm else norm_class
         
     | 
| 418 | 
         
            +
                    norm_fn = partial(norm_class, dim)
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
                    norm_fn = nn.Identity if use_rezero else norm_fn
         
     | 
| 421 | 
         
            +
                    branch_fn = Rezero if use_rezero else None
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                    if cross_attend and not only_cross:
         
     | 
| 424 | 
         
            +
                        default_block = ('a', 'c', 'f')
         
     | 
| 425 | 
         
            +
                    elif cross_attend and only_cross:
         
     | 
| 426 | 
         
            +
                        default_block = ('c', 'f')
         
     | 
| 427 | 
         
            +
                    else:
         
     | 
| 428 | 
         
            +
                        default_block = ('a', 'f')
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                    if macaron:
         
     | 
| 431 | 
         
            +
                        default_block = ('f',) + default_block
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                    if exists(custom_layers):
         
     | 
| 434 | 
         
            +
                        layer_types = custom_layers
         
     | 
| 435 | 
         
            +
                    elif exists(par_ratio):
         
     | 
| 436 | 
         
            +
                        par_depth = depth * len(default_block)
         
     | 
| 437 | 
         
            +
                        assert 1 < par_ratio <= par_depth, 'par ratio out of range'
         
     | 
| 438 | 
         
            +
                        default_block = tuple(filter(not_equals('f'), default_block))
         
     | 
| 439 | 
         
            +
                        par_attn = par_depth // par_ratio
         
     | 
| 440 | 
         
            +
                        depth_cut = par_depth * 2 // 3  # 2 / 3 attention layer cutoff suggested by PAR paper
         
     | 
| 441 | 
         
            +
                        par_width = (depth_cut + depth_cut // par_attn) // par_attn
         
     | 
| 442 | 
         
            +
                        assert len(default_block) <= par_width, 'default block is too large for par_ratio'
         
     | 
| 443 | 
         
            +
                        par_block = default_block + ('f',) * (par_width - len(default_block))
         
     | 
| 444 | 
         
            +
                        par_head = par_block * par_attn
         
     | 
| 445 | 
         
            +
                        layer_types = par_head + ('f',) * (par_depth - len(par_head))
         
     | 
| 446 | 
         
            +
                    elif exists(sandwich_coef):
         
     | 
| 447 | 
         
            +
                        assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
         
     | 
| 448 | 
         
            +
                        layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
         
     | 
| 449 | 
         
            +
                    else:
         
     | 
| 450 | 
         
            +
                        layer_types = default_block * depth
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                    self.layer_types = layer_types
         
     | 
| 453 | 
         
            +
                    self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                    for layer_type in self.layer_types:
         
     | 
| 456 | 
         
            +
                        if layer_type == 'a':
         
     | 
| 457 | 
         
            +
                            layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs)
         
     | 
| 458 | 
         
            +
                        elif layer_type == 'c':
         
     | 
| 459 | 
         
            +
                            layer = Attention(dim, heads=heads, **attn_kwargs)
         
     | 
| 460 | 
         
            +
                        elif layer_type == 'f':
         
     | 
| 461 | 
         
            +
                            layer = FeedForward(dim, **ff_kwargs)
         
     | 
| 462 | 
         
            +
                            layer = layer if not macaron else Scale(0.5, layer)
         
     | 
| 463 | 
         
            +
                        else:
         
     | 
| 464 | 
         
            +
                            raise Exception(f'invalid layer type {layer_type}')
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
                        if isinstance(layer, Attention) and exists(branch_fn):
         
     | 
| 467 | 
         
            +
                            layer = branch_fn(layer)
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                        if gate_residual:
         
     | 
| 470 | 
         
            +
                            residual_fn = GRUGating(dim)
         
     | 
| 471 | 
         
            +
                        else:
         
     | 
| 472 | 
         
            +
                            residual_fn = Residual()
         
     | 
| 473 | 
         
            +
             
     | 
| 474 | 
         
            +
                        self.layers.append(nn.ModuleList([
         
     | 
| 475 | 
         
            +
                            norm_fn(),
         
     | 
| 476 | 
         
            +
                            layer,
         
     | 
| 477 | 
         
            +
                            residual_fn
         
     | 
| 478 | 
         
            +
                        ]))
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                def forward(
         
     | 
| 481 | 
         
            +
                        self,
         
     | 
| 482 | 
         
            +
                        x,
         
     | 
| 483 | 
         
            +
                        context=None,
         
     | 
| 484 | 
         
            +
                        mask=None,
         
     | 
| 485 | 
         
            +
                        context_mask=None,
         
     | 
| 486 | 
         
            +
                        mems=None,
         
     | 
| 487 | 
         
            +
                        return_hiddens=False
         
     | 
| 488 | 
         
            +
                ):
         
     | 
| 489 | 
         
            +
                    hiddens = []
         
     | 
| 490 | 
         
            +
                    intermediates = []
         
     | 
| 491 | 
         
            +
                    prev_attn = None
         
     | 
| 492 | 
         
            +
                    prev_cross_attn = None
         
     | 
| 493 | 
         
            +
             
     | 
| 494 | 
         
            +
                    mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
         
     | 
| 495 | 
         
            +
             
     | 
| 496 | 
         
            +
                    for ind, (layer_type, (norm, block, residual_fn)) in enumerate(zip(self.layer_types, self.layers)):
         
     | 
| 497 | 
         
            +
                        is_last = ind == (len(self.layers) - 1)
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                        if layer_type == 'a':
         
     | 
| 500 | 
         
            +
                            hiddens.append(x)
         
     | 
| 501 | 
         
            +
                            layer_mem = mems.pop(0)
         
     | 
| 502 | 
         
            +
             
     | 
| 503 | 
         
            +
                        residual = x
         
     | 
| 504 | 
         
            +
             
     | 
| 505 | 
         
            +
                        if self.pre_norm:
         
     | 
| 506 | 
         
            +
                            x = norm(x)
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                        if layer_type == 'a':
         
     | 
| 509 | 
         
            +
                            out, inter = block(x, mask=mask, sinusoidal_emb=self.pia_pos_emb, rel_pos=self.rel_pos,
         
     | 
| 510 | 
         
            +
                                               prev_attn=prev_attn, mem=layer_mem)
         
     | 
| 511 | 
         
            +
                        elif layer_type == 'c':
         
     | 
| 512 | 
         
            +
                            out, inter = block(x, context=context, mask=mask, context_mask=context_mask, prev_attn=prev_cross_attn)
         
     | 
| 513 | 
         
            +
                        elif layer_type == 'f':
         
     | 
| 514 | 
         
            +
                            out = block(x)
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                        x = residual_fn(out, residual)
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
                        if layer_type in ('a', 'c'):
         
     | 
| 519 | 
         
            +
                            intermediates.append(inter)
         
     | 
| 520 | 
         
            +
             
     | 
| 521 | 
         
            +
                        if layer_type == 'a' and self.residual_attn:
         
     | 
| 522 | 
         
            +
                            prev_attn = inter.pre_softmax_attn
         
     | 
| 523 | 
         
            +
                        elif layer_type == 'c' and self.cross_residual_attn:
         
     | 
| 524 | 
         
            +
                            prev_cross_attn = inter.pre_softmax_attn
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                        if not self.pre_norm and not is_last:
         
     | 
| 527 | 
         
            +
                            x = norm(x)
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    if return_hiddens:
         
     | 
| 530 | 
         
            +
                        intermediates = LayerIntermediates(
         
     | 
| 531 | 
         
            +
                            hiddens=hiddens,
         
     | 
| 532 | 
         
            +
                            attn_intermediates=intermediates
         
     | 
| 533 | 
         
            +
                        )
         
     | 
| 534 | 
         
            +
             
     | 
| 535 | 
         
            +
                        return x, intermediates
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                    return x
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
            class Encoder(AttentionLayers):
         
     | 
| 541 | 
         
            +
                def __init__(self, **kwargs):
         
     | 
| 542 | 
         
            +
                    assert 'causal' not in kwargs, 'cannot set causality on encoder'
         
     | 
| 543 | 
         
            +
                    super().__init__(causal=False, **kwargs)
         
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
            class TransformerWrapper(nn.Module):
         
     | 
| 548 | 
         
            +
                def __init__(
         
     | 
| 549 | 
         
            +
                        self,
         
     | 
| 550 | 
         
            +
                        *,
         
     | 
| 551 | 
         
            +
                        num_tokens,
         
     | 
| 552 | 
         
            +
                        max_seq_len,
         
     | 
| 553 | 
         
            +
                        attn_layers,
         
     | 
| 554 | 
         
            +
                        emb_dim=None,
         
     | 
| 555 | 
         
            +
                        max_mem_len=0.,
         
     | 
| 556 | 
         
            +
                        emb_dropout=0.,
         
     | 
| 557 | 
         
            +
                        num_memory_tokens=None,
         
     | 
| 558 | 
         
            +
                        tie_embedding=False,
         
     | 
| 559 | 
         
            +
                        use_pos_emb=True
         
     | 
| 560 | 
         
            +
                ):
         
     | 
| 561 | 
         
            +
                    super().__init__()
         
     | 
| 562 | 
         
            +
                    assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    dim = attn_layers.dim
         
     | 
| 565 | 
         
            +
                    emb_dim = default(emb_dim, dim)
         
     | 
| 566 | 
         
            +
             
     | 
| 567 | 
         
            +
                    self.max_seq_len = max_seq_len
         
     | 
| 568 | 
         
            +
                    self.max_mem_len = max_mem_len
         
     | 
| 569 | 
         
            +
                    self.num_tokens = num_tokens
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
                    self.token_emb = nn.Embedding(num_tokens, emb_dim)
         
     | 
| 572 | 
         
            +
                    self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len) if (
         
     | 
| 573 | 
         
            +
                                use_pos_emb and not attn_layers.has_pos_emb) else always(0)
         
     | 
| 574 | 
         
            +
                    self.emb_dropout = nn.Dropout(emb_dropout)
         
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
                    self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
         
     | 
| 577 | 
         
            +
                    self.attn_layers = attn_layers
         
     | 
| 578 | 
         
            +
                    self.norm = nn.LayerNorm(dim)
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
                    self.init_()
         
     | 
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
                    self.to_logits = nn.Linear(dim, num_tokens) if not tie_embedding else lambda t: t @ self.token_emb.weight.t()
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                    # memory tokens (like [cls]) from Memory Transformers paper
         
     | 
| 585 | 
         
            +
                    num_memory_tokens = default(num_memory_tokens, 0)
         
     | 
| 586 | 
         
            +
                    self.num_memory_tokens = num_memory_tokens
         
     | 
| 587 | 
         
            +
                    if num_memory_tokens > 0:
         
     | 
| 588 | 
         
            +
                        self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
                        # let funnel encoder know number of memory tokens, if specified
         
     | 
| 591 | 
         
            +
                        if hasattr(attn_layers, 'num_memory_tokens'):
         
     | 
| 592 | 
         
            +
                            attn_layers.num_memory_tokens = num_memory_tokens
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                def init_(self):
         
     | 
| 595 | 
         
            +
                    nn.init.normal_(self.token_emb.weight, std=0.02)
         
     | 
| 596 | 
         
            +
             
     | 
| 597 | 
         
            +
                def forward(
         
     | 
| 598 | 
         
            +
                        self,
         
     | 
| 599 | 
         
            +
                        x,
         
     | 
| 600 | 
         
            +
                        return_embeddings=False,
         
     | 
| 601 | 
         
            +
                        mask=None,
         
     | 
| 602 | 
         
            +
                        return_mems=False,
         
     | 
| 603 | 
         
            +
                        return_attn=False,
         
     | 
| 604 | 
         
            +
                        mems=None,
         
     | 
| 605 | 
         
            +
                        **kwargs
         
     | 
| 606 | 
         
            +
                ):
         
     | 
| 607 | 
         
            +
                    b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens
         
     | 
| 608 | 
         
            +
                    x = self.token_emb(x)
         
     | 
| 609 | 
         
            +
                    x += self.pos_emb(x)
         
     | 
| 610 | 
         
            +
                    x = self.emb_dropout(x)
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
                    x = self.project_emb(x)
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                    if num_mem > 0:
         
     | 
| 615 | 
         
            +
                        mem = repeat(self.memory_tokens, 'n d -> b n d', b=b)
         
     | 
| 616 | 
         
            +
                        x = torch.cat((mem, x), dim=1)
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                        # auto-handle masking after appending memory tokens
         
     | 
| 619 | 
         
            +
                        if exists(mask):
         
     | 
| 620 | 
         
            +
                            mask = F.pad(mask, (num_mem, 0), value=True)
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                    x, intermediates = self.attn_layers(x, mask=mask, mems=mems, return_hiddens=True, **kwargs)
         
     | 
| 623 | 
         
            +
                    x = self.norm(x)
         
     | 
| 624 | 
         
            +
             
     | 
| 625 | 
         
            +
                    mem, x = x[:, :num_mem], x[:, num_mem:]
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                    out = self.to_logits(x) if not return_embeddings else x
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                    if return_mems:
         
     | 
| 630 | 
         
            +
                        hiddens = intermediates.hiddens
         
     | 
| 631 | 
         
            +
                        new_mems = list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) if exists(mems) else hiddens
         
     | 
| 632 | 
         
            +
                        new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
         
     | 
| 633 | 
         
            +
                        return out, new_mems
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                    if return_attn:
         
     | 
| 636 | 
         
            +
                        attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
         
     | 
| 637 | 
         
            +
                        return out, attn_maps
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
                    return out
         
     | 
    	
        prompts/art.png
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/bear.png
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/boy.png
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/dance1.jpeg
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/fire_and_beach.jpg
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/girl2.jpeg
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/girl3.jpeg
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/guitar0.jpeg
    ADDED
    
    
											 
									 | 
									
								
    	
        prompts/test_prompts.txt
    ADDED
    
    | 
         @@ -0,0 +1,8 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            man fishing in a boat at sunset
         
     | 
| 2 | 
         
            +
            a brown bear is walking in a zoo enclosure, some rocks around
         
     | 
| 3 | 
         
            +
            boy walking on the street
         
     | 
| 4 | 
         
            +
            two people dancing
         
     | 
| 5 | 
         
            +
            a campfire on the beach and the ocean waves in the background
         
     | 
| 6 | 
         
            +
            girl with fires and smoke on his head
         
     | 
| 7 | 
         
            +
            girl talking and blinking
         
     | 
| 8 | 
         
            +
            bear playing guitar happily, snowing
         
     | 
    	
        requirements.txt
    ADDED
    
    | 
         @@ -0,0 +1,23 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            decord==0.6.0
         
     | 
| 2 | 
         
            +
            einops==0.3.0
         
     | 
| 3 | 
         
            +
            imageio==2.9.0
         
     | 
| 4 | 
         
            +
            numpy==1.24.2
         
     | 
| 5 | 
         
            +
            omegaconf==2.1.1
         
     | 
| 6 | 
         
            +
            opencv_python
         
     | 
| 7 | 
         
            +
            pandas==2.0.0
         
     | 
| 8 | 
         
            +
            Pillow==9.5.0
         
     | 
| 9 | 
         
            +
            pytorch_lightning==1.8.3
         
     | 
| 10 | 
         
            +
            PyYAML==6.0
         
     | 
| 11 | 
         
            +
            setuptools==65.6.3
         
     | 
| 12 | 
         
            +
            torch==2.0.0
         
     | 
| 13 | 
         
            +
            torchvision
         
     | 
| 14 | 
         
            +
            tqdm==4.65.0
         
     | 
| 15 | 
         
            +
            transformers==4.25.1
         
     | 
| 16 | 
         
            +
            moviepy
         
     | 
| 17 | 
         
            +
            av
         
     | 
| 18 | 
         
            +
            xformers
         
     | 
| 19 | 
         
            +
            gradio
         
     | 
| 20 | 
         
            +
            timm
         
     | 
| 21 | 
         
            +
            scikit-learn 
         
     | 
| 22 | 
         
            +
            open_clip_torch==2.22.0
         
     | 
| 23 | 
         
            +
            kornia
         
     | 
    	
        scripts/evaluation/__pycache__/funcs.cpython-39.pyc
    ADDED
    
    | 
         Binary file (6.87 kB). View file 
     | 
| 
         | 
    	
        scripts/evaluation/ddp_wrapper.py
    ADDED
    
    | 
         @@ -0,0 +1,47 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import datetime
         
     | 
| 2 | 
         
            +
            import argparse, importlib
         
     | 
| 3 | 
         
            +
            from pytorch_lightning import seed_everything
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import torch
         
     | 
| 6 | 
         
            +
            import torch.distributed as dist
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            def setup_dist(local_rank):
         
     | 
| 9 | 
         
            +
                if dist.is_initialized():
         
     | 
| 10 | 
         
            +
                    return
         
     | 
| 11 | 
         
            +
                torch.cuda.set_device(local_rank)
         
     | 
| 12 | 
         
            +
                torch.distributed.init_process_group('nccl', init_method='env://')
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            def get_dist_info():
         
     | 
| 16 | 
         
            +
                if dist.is_available():
         
     | 
| 17 | 
         
            +
                    initialized = dist.is_initialized()
         
     | 
| 18 | 
         
            +
                else:
         
     | 
| 19 | 
         
            +
                    initialized = False
         
     | 
| 20 | 
         
            +
                if initialized:
         
     | 
| 21 | 
         
            +
                    rank = dist.get_rank()
         
     | 
| 22 | 
         
            +
                    world_size = dist.get_world_size()
         
     | 
| 23 | 
         
            +
                else:
         
     | 
| 24 | 
         
            +
                    rank = 0
         
     | 
| 25 | 
         
            +
                    world_size = 1
         
     | 
| 26 | 
         
            +
                return rank, world_size
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 30 | 
         
            +
                now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
         
     | 
| 31 | 
         
            +
                parser = argparse.ArgumentParser()
         
     | 
| 32 | 
         
            +
                parser.add_argument("--module", type=str, help="module name", default="inference")
         
     | 
| 33 | 
         
            +
                parser.add_argument("--local_rank", type=int, nargs="?", help="for ddp", default=0)
         
     | 
| 34 | 
         
            +
                args, unknown = parser.parse_known_args()
         
     | 
| 35 | 
         
            +
                inference_api = importlib.import_module(args.module, package=None)
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
                inference_parser = inference_api.get_parser()
         
     | 
| 38 | 
         
            +
                inference_args, unknown = inference_parser.parse_known_args()
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                seed_everything(inference_args.seed)
         
     | 
| 41 | 
         
            +
                setup_dist(args.local_rank)
         
     | 
| 42 | 
         
            +
                torch.backends.cudnn.benchmark = True
         
     | 
| 43 | 
         
            +
                rank, gpu_num = get_dist_info()
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                inference_args.savedir = inference_args.savedir+str('_seed')+str(inference_args.seed)
         
     | 
| 46 | 
         
            +
                print("@CoLVDM Inference [rank%d]: %s"%(rank, now))
         
     | 
| 47 | 
         
            +
                inference_api.run_inference(inference_args, gpu_num, rank)
         
     | 
    	
        scripts/evaluation/funcs.py
    ADDED
    
    | 
         @@ -0,0 +1,205 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os, sys, glob
         
     | 
| 2 | 
         
            +
            import numpy as np
         
     | 
| 3 | 
         
            +
            from collections import OrderedDict
         
     | 
| 4 | 
         
            +
            from decord import VideoReader, cpu
         
     | 
| 5 | 
         
            +
            import cv2
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import torch
         
     | 
| 8 | 
         
            +
            import torchvision
         
     | 
| 9 | 
         
            +
            sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
         
     | 
| 10 | 
         
            +
            from lvdm.models.samplers.ddim import DDIMSampler
         
     | 
| 11 | 
         
            +
            from einops import rearrange
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
         
     | 
| 15 | 
         
            +
                                    cfg_scale=1.0, temporal_cfg_scale=None, **kwargs):
         
     | 
| 16 | 
         
            +
                ddim_sampler = DDIMSampler(model)
         
     | 
| 17 | 
         
            +
                uncond_type = model.uncond_type
         
     | 
| 18 | 
         
            +
                batch_size = noise_shape[0]
         
     | 
| 19 | 
         
            +
                fs = cond["fs"]
         
     | 
| 20 | 
         
            +
                del cond["fs"]
         
     | 
| 21 | 
         
            +
                ## construct unconditional guidance
         
     | 
| 22 | 
         
            +
                if cfg_scale != 1.0:
         
     | 
| 23 | 
         
            +
                    if uncond_type == "empty_seq":
         
     | 
| 24 | 
         
            +
                        prompts = batch_size * [""]
         
     | 
| 25 | 
         
            +
                        #prompts = N * T * [""]  ## if is_imgbatch=True
         
     | 
| 26 | 
         
            +
                        uc_emb = model.get_learned_conditioning(prompts)
         
     | 
| 27 | 
         
            +
                    elif uncond_type == "zero_embed":
         
     | 
| 28 | 
         
            +
                        c_emb = cond["c_crossattn"][0] if isinstance(cond, dict) else cond
         
     | 
| 29 | 
         
            +
                        uc_emb = torch.zeros_like(c_emb)
         
     | 
| 30 | 
         
            +
                            
         
     | 
| 31 | 
         
            +
                    ## process image embedding token
         
     | 
| 32 | 
         
            +
                    if hasattr(model, 'embedder'):
         
     | 
| 33 | 
         
            +
                        uc_img = torch.zeros(noise_shape[0],3,224,224).to(model.device)
         
     | 
| 34 | 
         
            +
                        ## img: b c h w >> b l c
         
     | 
| 35 | 
         
            +
                        uc_img = model.embedder(uc_img)
         
     | 
| 36 | 
         
            +
                        uc_img = model.image_proj_model(uc_img)
         
     | 
| 37 | 
         
            +
                        uc_emb = torch.cat([uc_emb, uc_img], dim=1)
         
     | 
| 38 | 
         
            +
                    
         
     | 
| 39 | 
         
            +
                    if isinstance(cond, dict):
         
     | 
| 40 | 
         
            +
                        uc = {key:cond[key] for key in cond.keys()}
         
     | 
| 41 | 
         
            +
                        uc.update({'c_crossattn': [uc_emb]})
         
     | 
| 42 | 
         
            +
                    else:
         
     | 
| 43 | 
         
            +
                        uc = uc_emb
         
     | 
| 44 | 
         
            +
                else:
         
     | 
| 45 | 
         
            +
                    uc = None
         
     | 
| 46 | 
         
            +
                
         
     | 
| 47 | 
         
            +
                x_T = None
         
     | 
| 48 | 
         
            +
                batch_variants = []
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                for _ in range(n_samples):
         
     | 
| 51 | 
         
            +
                    if ddim_sampler is not None:
         
     | 
| 52 | 
         
            +
                        kwargs.update({"clean_cond": True})
         
     | 
| 53 | 
         
            +
                        samples, _ = ddim_sampler.sample(S=ddim_steps,
         
     | 
| 54 | 
         
            +
                                                        conditioning=cond,
         
     | 
| 55 | 
         
            +
                                                        batch_size=noise_shape[0],
         
     | 
| 56 | 
         
            +
                                                        shape=noise_shape[1:],
         
     | 
| 57 | 
         
            +
                                                        verbose=False,
         
     | 
| 58 | 
         
            +
                                                        unconditional_guidance_scale=cfg_scale,
         
     | 
| 59 | 
         
            +
                                                        unconditional_conditioning=uc,
         
     | 
| 60 | 
         
            +
                                                        eta=ddim_eta,
         
     | 
| 61 | 
         
            +
                                                        temporal_length=noise_shape[2],
         
     | 
| 62 | 
         
            +
                                                        conditional_guidance_scale_temporal=temporal_cfg_scale,
         
     | 
| 63 | 
         
            +
                                                        x_T=x_T,
         
     | 
| 64 | 
         
            +
                                                        fs=fs,
         
     | 
| 65 | 
         
            +
                                                        **kwargs
         
     | 
| 66 | 
         
            +
                                                        )
         
     | 
| 67 | 
         
            +
                    ## reconstruct from latent to pixel space
         
     | 
| 68 | 
         
            +
                    batch_images = model.decode_first_stage(samples)
         
     | 
| 69 | 
         
            +
                    batch_variants.append(batch_images)
         
     | 
| 70 | 
         
            +
                ## batch, <samples>, c, t, h, w
         
     | 
| 71 | 
         
            +
                batch_variants = torch.stack(batch_variants, dim=1)
         
     | 
| 72 | 
         
            +
                return batch_variants
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            def get_filelist(data_dir, ext='*'):
         
     | 
| 76 | 
         
            +
                file_list = glob.glob(os.path.join(data_dir, '*.%s'%ext))
         
     | 
| 77 | 
         
            +
                file_list.sort()
         
     | 
| 78 | 
         
            +
                return file_list
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            def get_dirlist(path):
         
     | 
| 81 | 
         
            +
                list = []
         
     | 
| 82 | 
         
            +
                if (os.path.exists(path)):
         
     | 
| 83 | 
         
            +
                    files = os.listdir(path)
         
     | 
| 84 | 
         
            +
                    for file in files:
         
     | 
| 85 | 
         
            +
                        m = os.path.join(path,file)
         
     | 
| 86 | 
         
            +
                        if (os.path.isdir(m)):
         
     | 
| 87 | 
         
            +
                            list.append(m)
         
     | 
| 88 | 
         
            +
                list.sort()
         
     | 
| 89 | 
         
            +
                return list
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            def load_model_checkpoint(model, ckpt):
         
     | 
| 93 | 
         
            +
                def load_checkpoint(model, ckpt, full_strict):
         
     | 
| 94 | 
         
            +
                    state_dict = torch.load(ckpt, map_location="cpu")
         
     | 
| 95 | 
         
            +
                    try:
         
     | 
| 96 | 
         
            +
                        ## deepspeed
         
     | 
| 97 | 
         
            +
                        new_pl_sd = OrderedDict()
         
     | 
| 98 | 
         
            +
                        for key in state_dict['module'].keys():
         
     | 
| 99 | 
         
            +
                            new_pl_sd[key[16:]]=state_dict['module'][key]
         
     | 
| 100 | 
         
            +
                        model.load_state_dict(new_pl_sd, strict=full_strict)
         
     | 
| 101 | 
         
            +
                    except:
         
     | 
| 102 | 
         
            +
                        if "state_dict" in list(state_dict.keys()):
         
     | 
| 103 | 
         
            +
                            state_dict = state_dict["state_dict"]
         
     | 
| 104 | 
         
            +
                        model.load_state_dict(state_dict, strict=full_strict)
         
     | 
| 105 | 
         
            +
                    return model
         
     | 
| 106 | 
         
            +
                load_checkpoint(model, ckpt, full_strict=True)
         
     | 
| 107 | 
         
            +
                print('>>> model checkpoint loaded.')
         
     | 
| 108 | 
         
            +
                return model
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
            def load_prompts(prompt_file):
         
     | 
| 112 | 
         
            +
                f = open(prompt_file, 'r')
         
     | 
| 113 | 
         
            +
                prompt_list = []
         
     | 
| 114 | 
         
            +
                for idx, line in enumerate(f.readlines()):
         
     | 
| 115 | 
         
            +
                    l = line.strip()
         
     | 
| 116 | 
         
            +
                    if len(l) != 0:
         
     | 
| 117 | 
         
            +
                        prompt_list.append(l)
         
     | 
| 118 | 
         
            +
                    f.close()
         
     | 
| 119 | 
         
            +
                return prompt_list
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
            def load_video_batch(filepath_list, frame_stride, video_size=(256,256), video_frames=16):
         
     | 
| 123 | 
         
            +
                '''
         
     | 
| 124 | 
         
            +
                Notice about some special cases:
         
     | 
| 125 | 
         
            +
                1. video_frames=-1 means to take all the frames (with fs=1)
         
     | 
| 126 | 
         
            +
                2. when the total video frames is less than required, padding strategy will be used (repreated last frame)
         
     | 
| 127 | 
         
            +
                '''
         
     | 
| 128 | 
         
            +
                fps_list = []
         
     | 
| 129 | 
         
            +
                batch_tensor = []
         
     | 
| 130 | 
         
            +
                assert frame_stride > 0, "valid frame stride should be a positive interge!"
         
     | 
| 131 | 
         
            +
                for filepath in filepath_list:
         
     | 
| 132 | 
         
            +
                    padding_num = 0
         
     | 
| 133 | 
         
            +
                    vidreader = VideoReader(filepath, ctx=cpu(0), width=video_size[1], height=video_size[0])
         
     | 
| 134 | 
         
            +
                    fps = vidreader.get_avg_fps()
         
     | 
| 135 | 
         
            +
                    total_frames = len(vidreader)
         
     | 
| 136 | 
         
            +
                    max_valid_frames = (total_frames-1) // frame_stride + 1
         
     | 
| 137 | 
         
            +
                    if video_frames < 0:
         
     | 
| 138 | 
         
            +
                        ## all frames are collected: fs=1 is a must
         
     | 
| 139 | 
         
            +
                        required_frames = total_frames
         
     | 
| 140 | 
         
            +
                        frame_stride = 1
         
     | 
| 141 | 
         
            +
                    else:
         
     | 
| 142 | 
         
            +
                        required_frames = video_frames
         
     | 
| 143 | 
         
            +
                    query_frames = min(required_frames, max_valid_frames)
         
     | 
| 144 | 
         
            +
                    frame_indices = [frame_stride*i for i in range(query_frames)]
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                    ## [t,h,w,c] -> [c,t,h,w]
         
     | 
| 147 | 
         
            +
                    frames = vidreader.get_batch(frame_indices)
         
     | 
| 148 | 
         
            +
                    frame_tensor = torch.tensor(frames.asnumpy()).permute(3, 0, 1, 2).float()
         
     | 
| 149 | 
         
            +
                    frame_tensor = (frame_tensor / 255. - 0.5) * 2
         
     | 
| 150 | 
         
            +
                    if max_valid_frames < required_frames:
         
     | 
| 151 | 
         
            +
                        padding_num = required_frames - max_valid_frames
         
     | 
| 152 | 
         
            +
                        frame_tensor = torch.cat([frame_tensor, *([frame_tensor[:,-1:,:,:]]*padding_num)], dim=1)
         
     | 
| 153 | 
         
            +
                        print(f'{os.path.split(filepath)[1]} is not long enough: {padding_num} frames padded.')
         
     | 
| 154 | 
         
            +
                    batch_tensor.append(frame_tensor)
         
     | 
| 155 | 
         
            +
                    sample_fps = int(fps/frame_stride)
         
     | 
| 156 | 
         
            +
                    fps_list.append(sample_fps)
         
     | 
| 157 | 
         
            +
                
         
     | 
| 158 | 
         
            +
                return torch.stack(batch_tensor, dim=0)
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
            from PIL import Image
         
     | 
| 161 | 
         
            +
            def load_image_batch(filepath_list, image_size=(256,256)):
         
     | 
| 162 | 
         
            +
                batch_tensor = []
         
     | 
| 163 | 
         
            +
                for filepath in filepath_list:
         
     | 
| 164 | 
         
            +
                    _, filename = os.path.split(filepath)
         
     | 
| 165 | 
         
            +
                    _, ext = os.path.splitext(filename)
         
     | 
| 166 | 
         
            +
                    if ext == '.mp4':
         
     | 
| 167 | 
         
            +
                        vidreader = VideoReader(filepath, ctx=cpu(0), width=image_size[1], height=image_size[0])
         
     | 
| 168 | 
         
            +
                        frame = vidreader.get_batch([0])
         
     | 
| 169 | 
         
            +
                        img_tensor = torch.tensor(frame.asnumpy()).squeeze(0).permute(2, 0, 1).float()
         
     | 
| 170 | 
         
            +
                    elif ext == '.png' or ext == '.jpg':
         
     | 
| 171 | 
         
            +
                        img = Image.open(filepath).convert("RGB")
         
     | 
| 172 | 
         
            +
                        rgb_img = np.array(img, np.float32)
         
     | 
| 173 | 
         
            +
                        #bgr_img = cv2.imread(filepath, cv2.IMREAD_COLOR)
         
     | 
| 174 | 
         
            +
                        #bgr_img = cv2.cvtColor(bgr_img, cv2.COLOR_BGR2RGB)
         
     | 
| 175 | 
         
            +
                        rgb_img = cv2.resize(rgb_img, (image_size[1],image_size[0]), interpolation=cv2.INTER_LINEAR)
         
     | 
| 176 | 
         
            +
                        img_tensor = torch.from_numpy(rgb_img).permute(2, 0, 1).float()
         
     | 
| 177 | 
         
            +
                    else:
         
     | 
| 178 | 
         
            +
                        print(f'ERROR: <{ext}> image loading only support format: [mp4], [png], [jpg]')
         
     | 
| 179 | 
         
            +
                        raise NotImplementedError
         
     | 
| 180 | 
         
            +
                    img_tensor = (img_tensor / 255. - 0.5) * 2
         
     | 
| 181 | 
         
            +
                    batch_tensor.append(img_tensor)
         
     | 
| 182 | 
         
            +
                return torch.stack(batch_tensor, dim=0)
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
            def save_videos(batch_tensors, savedir, filenames, fps=10):
         
     | 
| 186 | 
         
            +
                # b,samples,c,t,h,w
         
     | 
| 187 | 
         
            +
                n_samples = batch_tensors.shape[1]
         
     | 
| 188 | 
         
            +
                for idx, vid_tensor in enumerate(batch_tensors):
         
     | 
| 189 | 
         
            +
                    video = vid_tensor.detach().cpu()
         
     | 
| 190 | 
         
            +
                    video = torch.clamp(video.float(), -1., 1.)
         
     | 
| 191 | 
         
            +
                    video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
         
     | 
| 192 | 
         
            +
                    frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n_samples)) for framesheet in video] #[3, 1*h, n*w]
         
     | 
| 193 | 
         
            +
                    grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w]
         
     | 
| 194 | 
         
            +
                    grid = (grid + 1.0) / 2.0
         
     | 
| 195 | 
         
            +
                    grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
         
     | 
| 196 | 
         
            +
                    savepath = os.path.join(savedir, f"{filenames[idx]}.mp4")
         
     | 
| 197 | 
         
            +
                    torchvision.io.write_video(savepath, grid, fps=fps, video_codec='h264', options={'crf': '10'})
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            def get_latent_z(model, videos):
         
     | 
| 201 | 
         
            +
                b, c, t, h, w = videos.shape
         
     | 
| 202 | 
         
            +
                x = rearrange(videos, 'b c t h w -> (b t) c h w')
         
     | 
| 203 | 
         
            +
                z = model.encode_first_stage(x)
         
     | 
| 204 | 
         
            +
                z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
         
     | 
| 205 | 
         
            +
                return z
         
     | 
    	
        scripts/evaluation/inference.py
    ADDED
    
    | 
         @@ -0,0 +1,329 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import argparse, os, sys, glob
         
     | 
| 2 | 
         
            +
            import datetime, time
         
     | 
| 3 | 
         
            +
            from omegaconf import OmegaConf
         
     | 
| 4 | 
         
            +
            from tqdm import tqdm
         
     | 
| 5 | 
         
            +
            from einops import rearrange, repeat
         
     | 
| 6 | 
         
            +
            from collections import OrderedDict
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import torch
         
     | 
| 9 | 
         
            +
            import torchvision
         
     | 
| 10 | 
         
            +
            import torchvision.transforms as transforms
         
     | 
| 11 | 
         
            +
            from pytorch_lightning import seed_everything
         
     | 
| 12 | 
         
            +
            from PIL import Image
         
     | 
| 13 | 
         
            +
            sys.path.insert(1, os.path.join(sys.path[0], '..', '..'))
         
     | 
| 14 | 
         
            +
            from lvdm.models.samplers.ddim import DDIMSampler
         
     | 
| 15 | 
         
            +
            from lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond
         
     | 
| 16 | 
         
            +
            from utils.utils import instantiate_from_config
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            def get_filelist(data_dir, postfixes):
         
     | 
| 20 | 
         
            +
                patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes]
         
     | 
| 21 | 
         
            +
                file_list = []
         
     | 
| 22 | 
         
            +
                for pattern in patterns:
         
     | 
| 23 | 
         
            +
                    file_list.extend(glob.glob(pattern))
         
     | 
| 24 | 
         
            +
                file_list.sort()
         
     | 
| 25 | 
         
            +
                return file_list
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            def load_model_checkpoint(model, ckpt):
         
     | 
| 28 | 
         
            +
                state_dict = torch.load(ckpt, map_location="cpu")
         
     | 
| 29 | 
         
            +
                if "state_dict" in list(state_dict.keys()):
         
     | 
| 30 | 
         
            +
                    state_dict = state_dict["state_dict"]
         
     | 
| 31 | 
         
            +
                    model.load_state_dict(state_dict, strict=True)
         
     | 
| 32 | 
         
            +
                else:
         
     | 
| 33 | 
         
            +
                    # deepspeed
         
     | 
| 34 | 
         
            +
                    new_pl_sd = OrderedDict()
         
     | 
| 35 | 
         
            +
                    for key in state_dict['module'].keys():
         
     | 
| 36 | 
         
            +
                        new_pl_sd[key[16:]]=state_dict['module'][key]
         
     | 
| 37 | 
         
            +
                    model.load_state_dict(new_pl_sd)
         
     | 
| 38 | 
         
            +
                print('>>> model checkpoint loaded.')
         
     | 
| 39 | 
         
            +
                return model
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
            def load_prompts(prompt_file):
         
     | 
| 42 | 
         
            +
                f = open(prompt_file, 'r')
         
     | 
| 43 | 
         
            +
                prompt_list = []
         
     | 
| 44 | 
         
            +
                for idx, line in enumerate(f.readlines()):
         
     | 
| 45 | 
         
            +
                    l = line.strip()
         
     | 
| 46 | 
         
            +
                    if len(l) != 0:
         
     | 
| 47 | 
         
            +
                        prompt_list.append(l)
         
     | 
| 48 | 
         
            +
                    f.close()
         
     | 
| 49 | 
         
            +
                return prompt_list
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            def load_data_prompts(data_dir, video_size=(256,256), video_frames=16, gfi=False):
         
     | 
| 52 | 
         
            +
                transform = transforms.Compose([
         
     | 
| 53 | 
         
            +
                    transforms.Resize(min(video_size)),
         
     | 
| 54 | 
         
            +
                    transforms.CenterCrop(video_size),
         
     | 
| 55 | 
         
            +
                    transforms.ToTensor(),
         
     | 
| 56 | 
         
            +
                    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))])
         
     | 
| 57 | 
         
            +
                ## load prompts
         
     | 
| 58 | 
         
            +
                prompt_file = get_filelist(data_dir, ['txt'])
         
     | 
| 59 | 
         
            +
                assert len(prompt_file) > 0, "Error: found NO prompt file!"
         
     | 
| 60 | 
         
            +
                ###### default prompt
         
     | 
| 61 | 
         
            +
                default_idx = 0
         
     | 
| 62 | 
         
            +
                default_idx = min(default_idx, len(prompt_file)-1)
         
     | 
| 63 | 
         
            +
                if len(prompt_file) > 1:
         
     | 
| 64 | 
         
            +
                    print(f"Warning: multiple prompt files exist. The one {os.path.split(prompt_file[default_idx])[1]} is used.")
         
     | 
| 65 | 
         
            +
                ## only use the first one (sorted by name) if multiple exist
         
     | 
| 66 | 
         
            +
                
         
     | 
| 67 | 
         
            +
                ## load video
         
     | 
| 68 | 
         
            +
                file_list = get_filelist(data_dir, ['jpg', 'png', 'jpeg', 'JPEG', 'PNG'])
         
     | 
| 69 | 
         
            +
                # assert len(file_list) == n_samples, "Error: data and prompts are NOT paired!"
         
     | 
| 70 | 
         
            +
                data_list = []
         
     | 
| 71 | 
         
            +
                filename_list = []
         
     | 
| 72 | 
         
            +
                prompt_list = load_prompts(prompt_file[default_idx])
         
     | 
| 73 | 
         
            +
                n_samples = len(prompt_list)
         
     | 
| 74 | 
         
            +
                for idx in range(n_samples):
         
     | 
| 75 | 
         
            +
                    image = Image.open(file_list[idx]).convert('RGB')
         
     | 
| 76 | 
         
            +
                    image_tensor = transform(image).unsqueeze(1) # [c,1,h,w]
         
     | 
| 77 | 
         
            +
                    frame_tensor = repeat(image_tensor, 'c t h w -> c (repeat t) h w', repeat=video_frames)
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                    data_list.append(frame_tensor)
         
     | 
| 80 | 
         
            +
                    _, filename = os.path.split(file_list[idx])
         
     | 
| 81 | 
         
            +
                    filename_list.append(filename)
         
     | 
| 82 | 
         
            +
                    
         
     | 
| 83 | 
         
            +
                return filename_list, data_list, prompt_list
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
             
     | 
| 86 | 
         
            +
            def save_results(prompt, samples, filename, fakedir, fps=8, loop=False):
         
     | 
| 87 | 
         
            +
                filename = filename.split('.')[0]+'.mp4'
         
     | 
| 88 | 
         
            +
                prompt = prompt[0] if isinstance(prompt, list) else prompt
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                ## save video
         
     | 
| 91 | 
         
            +
                videos = [samples]
         
     | 
| 92 | 
         
            +
                savedirs = [fakedir]
         
     | 
| 93 | 
         
            +
                for idx, video in enumerate(videos):
         
     | 
| 94 | 
         
            +
                    if video is None:
         
     | 
| 95 | 
         
            +
                        continue
         
     | 
| 96 | 
         
            +
                    # b,c,t,h,w
         
     | 
| 97 | 
         
            +
                    video = video.detach().cpu()
         
     | 
| 98 | 
         
            +
                    video = torch.clamp(video.float(), -1., 1.)
         
     | 
| 99 | 
         
            +
                    n = video.shape[0]
         
     | 
| 100 | 
         
            +
                    video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w
         
     | 
| 101 | 
         
            +
                    if loop:
         
     | 
| 102 | 
         
            +
                        video = video[:-1,...]
         
     | 
| 103 | 
         
            +
                    
         
     | 
| 104 | 
         
            +
                    frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, 1*h, n*w]
         
     | 
| 105 | 
         
            +
                    grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, h, n*w]
         
     | 
| 106 | 
         
            +
                    grid = (grid + 1.0) / 2.0
         
     | 
| 107 | 
         
            +
                    grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1)
         
     | 
| 108 | 
         
            +
                    path = os.path.join(savedirs[idx], filename)
         
     | 
| 109 | 
         
            +
                    torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) ## crf indicates the quality
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
            def save_results_seperate(prompt, samples, filename, fakedir, fps=10, loop=False):
         
     | 
| 113 | 
         
            +
                prompt = prompt[0] if isinstance(prompt, list) else prompt
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                ## save video
         
     | 
| 116 | 
         
            +
                videos = [samples]
         
     | 
| 117 | 
         
            +
                savedirs = [fakedir]
         
     | 
| 118 | 
         
            +
                for idx, video in enumerate(videos):
         
     | 
| 119 | 
         
            +
                    if video is None:
         
     | 
| 120 | 
         
            +
                        continue
         
     | 
| 121 | 
         
            +
                    # b,c,t,h,w
         
     | 
| 122 | 
         
            +
                    video = video.detach().cpu()
         
     | 
| 123 | 
         
            +
                    if loop: # remove the last frame
         
     | 
| 124 | 
         
            +
                        video = video[:,:,:-1,...]
         
     | 
| 125 | 
         
            +
                    video = torch.clamp(video.float(), -1., 1.)
         
     | 
| 126 | 
         
            +
                    n = video.shape[0]
         
     | 
| 127 | 
         
            +
                    for i in range(n):
         
     | 
| 128 | 
         
            +
                        grid = video[i,...]
         
     | 
| 129 | 
         
            +
                        grid = (grid + 1.0) / 2.0
         
     | 
| 130 | 
         
            +
                        grid = (grid * 255).to(torch.uint8).permute(1, 2, 3, 0) #thwc
         
     | 
| 131 | 
         
            +
                        path = os.path.join(savedirs[idx].replace('samples', 'samples_separate'), f'{filename.split(".")[0]}_sample{i}.mp4')
         
     | 
| 132 | 
         
            +
                        torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'})
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
            def get_latent_z(model, videos):
         
     | 
| 135 | 
         
            +
                b, c, t, h, w = videos.shape
         
     | 
| 136 | 
         
            +
                x = rearrange(videos, 'b c t h w -> (b t) c h w')
         
     | 
| 137 | 
         
            +
                z = model.encode_first_stage(x)
         
     | 
| 138 | 
         
            +
                z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
         
     | 
| 139 | 
         
            +
                return z
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
            def image_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \
         
     | 
| 143 | 
         
            +
                                    unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, loop=False, gfi=False, **kwargs):
         
     | 
| 144 | 
         
            +
                ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
         
     | 
| 145 | 
         
            +
                batch_size = noise_shape[0]
         
     | 
| 146 | 
         
            +
                fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device)
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                if not text_input:
         
     | 
| 149 | 
         
            +
                    prompts = [""]*batch_size
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                img = videos[:,:,0] #bchw
         
     | 
| 152 | 
         
            +
                img_emb = model.embedder(img) ## blc
         
     | 
| 153 | 
         
            +
                img_emb = model.image_proj_model(img_emb)
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                cond_emb = model.get_learned_conditioning(prompts)
         
     | 
| 156 | 
         
            +
                cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]}
         
     | 
| 157 | 
         
            +
                if model.model.conditioning_key == 'hybrid':
         
     | 
| 158 | 
         
            +
                    z = get_latent_z(model, videos) # b c t h w
         
     | 
| 159 | 
         
            +
                    if loop or gfi:
         
     | 
| 160 | 
         
            +
                        img_cat_cond = torch.zeros_like(z)
         
     | 
| 161 | 
         
            +
                        img_cat_cond[:,:,0,:,:] = z[:,:,0,:,:]
         
     | 
| 162 | 
         
            +
                        img_cat_cond[:,:,-1,:,:] = z[:,:,-1,:,:]
         
     | 
| 163 | 
         
            +
                    else:
         
     | 
| 164 | 
         
            +
                        img_cat_cond = z[:,:,:1,:,:]
         
     | 
| 165 | 
         
            +
                        img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2])
         
     | 
| 166 | 
         
            +
                    cond["c_concat"] = [img_cat_cond] # b c 1 h w
         
     | 
| 167 | 
         
            +
                
         
     | 
| 168 | 
         
            +
                if unconditional_guidance_scale != 1.0:
         
     | 
| 169 | 
         
            +
                    if model.uncond_type == "empty_seq":
         
     | 
| 170 | 
         
            +
                        prompts = batch_size * [""]
         
     | 
| 171 | 
         
            +
                        uc_emb = model.get_learned_conditioning(prompts)
         
     | 
| 172 | 
         
            +
                    elif model.uncond_type == "zero_embed":
         
     | 
| 173 | 
         
            +
                        uc_emb = torch.zeros_like(cond_emb)
         
     | 
| 174 | 
         
            +
                    uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c
         
     | 
| 175 | 
         
            +
                    uc_img_emb = model.image_proj_model(uc_img_emb)
         
     | 
| 176 | 
         
            +
                    uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]}
         
     | 
| 177 | 
         
            +
                    if model.model.conditioning_key == 'hybrid':
         
     | 
| 178 | 
         
            +
                        uc["c_concat"] = [img_cat_cond]
         
     | 
| 179 | 
         
            +
                else:
         
     | 
| 180 | 
         
            +
                    uc = None
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                ## we need one more unconditioning image=yes, text=""
         
     | 
| 183 | 
         
            +
                if multiple_cond_cfg and cfg_img != 1.0:
         
     | 
| 184 | 
         
            +
                    uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]}
         
     | 
| 185 | 
         
            +
                    if model.model.conditioning_key == 'hybrid':
         
     | 
| 186 | 
         
            +
                        uc_2["c_concat"] = [img_cat_cond]
         
     | 
| 187 | 
         
            +
                    kwargs.update({"unconditional_conditioning_img_nonetext": uc_2})
         
     | 
| 188 | 
         
            +
                else:
         
     | 
| 189 | 
         
            +
                    kwargs.update({"unconditional_conditioning_img_nonetext": None})
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                z0 = None
         
     | 
| 192 | 
         
            +
                cond_mask = None
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                batch_variants = []
         
     | 
| 195 | 
         
            +
                for _ in range(n_samples):
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    if z0 is not None:
         
     | 
| 198 | 
         
            +
                        cond_z0 = z0.clone()
         
     | 
| 199 | 
         
            +
                        kwargs.update({"clean_cond": True})
         
     | 
| 200 | 
         
            +
                    else:
         
     | 
| 201 | 
         
            +
                        cond_z0 = None
         
     | 
| 202 | 
         
            +
                    if ddim_sampler is not None:
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                        samples, _ = ddim_sampler.sample(S=ddim_steps,
         
     | 
| 205 | 
         
            +
                                                        conditioning=cond,
         
     | 
| 206 | 
         
            +
                                                        batch_size=batch_size,
         
     | 
| 207 | 
         
            +
                                                        shape=noise_shape[1:],
         
     | 
| 208 | 
         
            +
                                                        verbose=False,
         
     | 
| 209 | 
         
            +
                                                        unconditional_guidance_scale=unconditional_guidance_scale,
         
     | 
| 210 | 
         
            +
                                                        unconditional_conditioning=uc,
         
     | 
| 211 | 
         
            +
                                                        eta=ddim_eta,
         
     | 
| 212 | 
         
            +
                                                        cfg_img=cfg_img, 
         
     | 
| 213 | 
         
            +
                                                        mask=cond_mask,
         
     | 
| 214 | 
         
            +
                                                        x0=cond_z0,
         
     | 
| 215 | 
         
            +
                                                        fs=fs,
         
     | 
| 216 | 
         
            +
                                                        **kwargs
         
     | 
| 217 | 
         
            +
                                                        )
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                    ## reconstruct from latent to pixel space
         
     | 
| 220 | 
         
            +
                    batch_images = model.decode_first_stage(samples)
         
     | 
| 221 | 
         
            +
                    batch_variants.append(batch_images)
         
     | 
| 222 | 
         
            +
                ## variants, batch, c, t, h, w
         
     | 
| 223 | 
         
            +
                batch_variants = torch.stack(batch_variants)
         
     | 
| 224 | 
         
            +
                return batch_variants.permute(1, 0, 2, 3, 4, 5)
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
            def run_inference(args, gpu_num, gpu_no):
         
     | 
| 228 | 
         
            +
                ## model config
         
     | 
| 229 | 
         
            +
                config = OmegaConf.load(args.config)
         
     | 
| 230 | 
         
            +
                model_config = config.pop("model", OmegaConf.create())
         
     | 
| 231 | 
         
            +
                
         
     | 
| 232 | 
         
            +
                ## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set"
         
     | 
| 233 | 
         
            +
                model_config['params']['unet_config']['params']['use_checkpoint'] = False
         
     | 
| 234 | 
         
            +
                model = instantiate_from_config(model_config)
         
     | 
| 235 | 
         
            +
                model = model.cuda(gpu_no)
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!"
         
     | 
| 238 | 
         
            +
                model = load_model_checkpoint(model, args.ckpt_path)
         
     | 
| 239 | 
         
            +
                model.eval()
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
                ## run over data
         
     | 
| 242 | 
         
            +
                assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!"
         
     | 
| 243 | 
         
            +
                assert args.bs == 1, "Current implementation only support [batch size = 1]!"
         
     | 
| 244 | 
         
            +
                ## latent noise shape
         
     | 
| 245 | 
         
            +
                h, w = args.height // 8, args.width // 8
         
     | 
| 246 | 
         
            +
                channels = model.model.diffusion_model.out_channels
         
     | 
| 247 | 
         
            +
                n_frames = args.video_length
         
     | 
| 248 | 
         
            +
                print(f'Inference with {n_frames} frames')
         
     | 
| 249 | 
         
            +
                noise_shape = [args.bs, channels, n_frames, h, w]
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                fakedir = os.path.join(args.savedir, "samples")
         
     | 
| 252 | 
         
            +
                fakedir_separate = os.path.join(args.savedir, "samples_separate")
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                # os.makedirs(fakedir, exist_ok=True)
         
     | 
| 255 | 
         
            +
                os.makedirs(fakedir_separate, exist_ok=True)
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                ## prompt file setting
         
     | 
| 258 | 
         
            +
                assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!"
         
     | 
| 259 | 
         
            +
                filename_list, data_list, prompt_list = load_data_prompts(args.prompt_dir, video_size=(args.height, args.width), video_frames=n_frames, gfi=args.gfi)
         
     | 
| 260 | 
         
            +
                num_samples = len(prompt_list)
         
     | 
| 261 | 
         
            +
                samples_split = num_samples // gpu_num
         
     | 
| 262 | 
         
            +
                print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples))
         
     | 
| 263 | 
         
            +
                #indices = random.choices(list(range(0, num_samples)), k=samples_per_device)
         
     | 
| 264 | 
         
            +
                indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1)))
         
     | 
| 265 | 
         
            +
                prompt_list_rank = [prompt_list[i] for i in indices]
         
     | 
| 266 | 
         
            +
                data_list_rank = [data_list[i] for i in indices]
         
     | 
| 267 | 
         
            +
                filename_list_rank = [filename_list[i] for i in indices]
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                start = time.time()
         
     | 
| 270 | 
         
            +
                with torch.no_grad(), torch.cuda.amp.autocast():
         
     | 
| 271 | 
         
            +
                    for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'):
         
     | 
| 272 | 
         
            +
                        prompts = prompt_list_rank[indice:indice+args.bs]
         
     | 
| 273 | 
         
            +
                        videos = data_list_rank[indice:indice+args.bs]
         
     | 
| 274 | 
         
            +
                        filenames = filename_list_rank[indice:indice+args.bs]
         
     | 
| 275 | 
         
            +
                        if isinstance(videos, list):
         
     | 
| 276 | 
         
            +
                            videos = torch.stack(videos, dim=0).to("cuda")
         
     | 
| 277 | 
         
            +
                        else:
         
     | 
| 278 | 
         
            +
                            videos = videos.unsqueeze(0).to("cuda")
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
                        batch_samples = image_guided_synthesis(model, prompts, videos, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \
         
     | 
| 281 | 
         
            +
                                            args.unconditional_guidance_scale, args.cfg_img, args.frame_stride, args.text_input, args.multiple_cond_cfg, args.loop, args.gfi)
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                        ## save each example individually
         
     | 
| 284 | 
         
            +
                        for nn, samples in enumerate(batch_samples):
         
     | 
| 285 | 
         
            +
                            ## samples : [n_samples,c,t,h,w]
         
     | 
| 286 | 
         
            +
                            prompt = prompts[nn]
         
     | 
| 287 | 
         
            +
                            filename = filenames[nn]
         
     | 
| 288 | 
         
            +
                            # save_results(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
         
     | 
| 289 | 
         
            +
                            save_results_seperate(prompt, samples, filename, fakedir, fps=8, loop=args.loop)
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds")
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
            def get_parser():
         
     | 
| 295 | 
         
            +
                parser = argparse.ArgumentParser()
         
     | 
| 296 | 
         
            +
                parser.add_argument("--savedir", type=str, default=None, help="results saving path")
         
     | 
| 297 | 
         
            +
                parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path")
         
     | 
| 298 | 
         
            +
                parser.add_argument("--config", type=str, help="config (yaml) path")
         
     | 
| 299 | 
         
            +
                parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts")
         
     | 
| 300 | 
         
            +
                parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",)
         
     | 
| 301 | 
         
            +
                parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",)
         
     | 
| 302 | 
         
            +
                parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",)
         
     | 
| 303 | 
         
            +
                parser.add_argument("--bs", type=int, default=1, help="batch size for inference, should be one")
         
     | 
| 304 | 
         
            +
                parser.add_argument("--height", type=int, default=512, help="image height, in pixel space")
         
     | 
| 305 | 
         
            +
                parser.add_argument("--width", type=int, default=512, help="image width, in pixel space")
         
     | 
| 306 | 
         
            +
                parser.add_argument("--frame_stride", type=int, default=3, choices=[1, 2, 3, 4, 5, 6], help="frame stride control for results, smaller value->smaller motion magnitude and more stable, and vice versa")
         
     | 
| 307 | 
         
            +
                parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance")
         
     | 
| 308 | 
         
            +
                parser.add_argument("--seed", type=int, default=123, help="seed for seed_everything")
         
     | 
| 309 | 
         
            +
                parser.add_argument("--video_length", type=int, default=16, help="inference video length")
         
     | 
| 310 | 
         
            +
                parser.add_argument("--negative_prompt", action='store_true', default=False, help="negative prompt")
         
     | 
| 311 | 
         
            +
                parser.add_argument("--text_input", action='store_true', default=False, help="input text to I2V model or not")
         
     | 
| 312 | 
         
            +
                parser.add_argument("--multiple_cond_cfg", action='store_true', default=False, help="use multi-condition cfg or not")
         
     | 
| 313 | 
         
            +
                parser.add_argument("--cfg_img", type=float, default=None, help="guidance scale for image conditioning")
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                ## currently not support looping video and generative frame interpolation
         
     | 
| 316 | 
         
            +
                parser.add_argument("--loop", action='store_true', default=False, help="generate looping videos or not")
         
     | 
| 317 | 
         
            +
                parser.add_argument("--gfi", action='store_true', default=False, help="generate generative frame interpolation (gfi) or not")
         
     | 
| 318 | 
         
            +
                return parser
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 322 | 
         
            +
                now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
         
     | 
| 323 | 
         
            +
                print("@CoVideoGen cond-Inference: %s"%now)
         
     | 
| 324 | 
         
            +
                parser = get_parser()
         
     | 
| 325 | 
         
            +
                args = parser.parse_args()
         
     | 
| 326 | 
         
            +
                
         
     | 
| 327 | 
         
            +
                seed_everything(args.seed)
         
     | 
| 328 | 
         
            +
                rank, gpu_num = 0, 1
         
     | 
| 329 | 
         
            +
                run_inference(args, gpu_num, rank)
         
     | 
    	
        scripts/gradio/__pycache__/i2v_test.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.84 kB). View file 
     | 
| 
         | 
    	
        scripts/gradio/i2v_test.py
    ADDED
    
    | 
         @@ -0,0 +1,102 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import os
         
     | 
| 2 | 
         
            +
            import time
         
     | 
| 3 | 
         
            +
            from omegaconf import OmegaConf
         
     | 
| 4 | 
         
            +
            import torch
         
     | 
| 5 | 
         
            +
            from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
         
     | 
| 6 | 
         
            +
            from utils.utils import instantiate_from_config
         
     | 
| 7 | 
         
            +
            from huggingface_hub import hf_hub_download
         
     | 
| 8 | 
         
            +
            from einops import repeat
         
     | 
| 9 | 
         
            +
            import torchvision.transforms as transforms
         
     | 
| 10 | 
         
            +
            from pytorch_lightning import seed_everything
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
            class Image2Video():
         
     | 
| 14 | 
         
            +
                def __init__(self,result_dir='./tmp/',gpu_num=1) -> None:
         
     | 
| 15 | 
         
            +
                    self.download_model()
         
     | 
| 16 | 
         
            +
                    self.result_dir = result_dir
         
     | 
| 17 | 
         
            +
                    if not os.path.exists(self.result_dir):
         
     | 
| 18 | 
         
            +
                        os.mkdir(self.result_dir)
         
     | 
| 19 | 
         
            +
                    ckpt_path='checkpoints/dynamicrafter_256_v1/model.ckpt'
         
     | 
| 20 | 
         
            +
                    config_file='configs/inference_256_v1.0.yaml'
         
     | 
| 21 | 
         
            +
                    config = OmegaConf.load(config_file)
         
     | 
| 22 | 
         
            +
                    model_config = config.pop("model", OmegaConf.create())
         
     | 
| 23 | 
         
            +
                    model_config['params']['unet_config']['params']['use_checkpoint']=False   
         
     | 
| 24 | 
         
            +
                    model_list = []
         
     | 
| 25 | 
         
            +
                    for gpu_id in range(gpu_num):
         
     | 
| 26 | 
         
            +
                        model = instantiate_from_config(model_config)
         
     | 
| 27 | 
         
            +
                        # model = model.cuda(gpu_id)
         
     | 
| 28 | 
         
            +
                        assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
         
     | 
| 29 | 
         
            +
                        model = load_model_checkpoint(model, ckpt_path)
         
     | 
| 30 | 
         
            +
                        model.eval()
         
     | 
| 31 | 
         
            +
                        model_list.append(model)
         
     | 
| 32 | 
         
            +
                    self.model_list = model_list
         
     | 
| 33 | 
         
            +
                    self.save_fps = 8
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                def get_image(self, image, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123):
         
     | 
| 36 | 
         
            +
                    seed_everything(seed)
         
     | 
| 37 | 
         
            +
                    transform = transforms.Compose([
         
     | 
| 38 | 
         
            +
                        transforms.Resize(256),
         
     | 
| 39 | 
         
            +
                        transforms.CenterCrop(256),
         
     | 
| 40 | 
         
            +
                        ])
         
     | 
| 41 | 
         
            +
                    torch.cuda.empty_cache()
         
     | 
| 42 | 
         
            +
                    print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
         
     | 
| 43 | 
         
            +
                    start = time.time()
         
     | 
| 44 | 
         
            +
                    gpu_id=0
         
     | 
| 45 | 
         
            +
                    if steps > 60:
         
     | 
| 46 | 
         
            +
                        steps = 60 
         
     | 
| 47 | 
         
            +
                    model = self.model_list[gpu_id]
         
     | 
| 48 | 
         
            +
                    model = model.cuda()
         
     | 
| 49 | 
         
            +
                    batch_size=1
         
     | 
| 50 | 
         
            +
                    channels = model.model.diffusion_model.out_channels
         
     | 
| 51 | 
         
            +
                    frames = model.temporal_length
         
     | 
| 52 | 
         
            +
                    h, w = 256 // 8, 256 // 8
         
     | 
| 53 | 
         
            +
                    noise_shape = [batch_size, channels, frames, h, w]
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                    # text cond
         
     | 
| 56 | 
         
            +
                    text_emb = model.get_learned_conditioning([prompt])
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                    # img cond
         
     | 
| 59 | 
         
            +
                    img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
         
     | 
| 60 | 
         
            +
                    img_tensor = (img_tensor / 255. - 0.5) * 2
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    image_tensor_resized = transform(img_tensor) #3,256,256
         
     | 
| 63 | 
         
            +
                    videos = image_tensor_resized.unsqueeze(0) # bchw
         
     | 
| 64 | 
         
            +
                    
         
     | 
| 65 | 
         
            +
                    z = get_latent_z(model, videos.unsqueeze(2)) #bc,1,hw
         
     | 
| 66 | 
         
            +
                    
         
     | 
| 67 | 
         
            +
                    img_tensor_repeat = repeat(z, 'b c t h w -> b c (repeat t) h w', repeat=frames)
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                    cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
         
     | 
| 70 | 
         
            +
                    img_emb = model.image_proj_model(cond_images)
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                    imtext_cond = torch.cat([text_emb, img_emb], dim=1)
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                    fs = torch.tensor([fs], dtype=torch.long, device=model.device)
         
     | 
| 75 | 
         
            +
                    cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat]}
         
     | 
| 76 | 
         
            +
                    
         
     | 
| 77 | 
         
            +
                    ## inference
         
     | 
| 78 | 
         
            +
                    batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale)
         
     | 
| 79 | 
         
            +
                    ## b,samples,c,t,h,w
         
     | 
| 80 | 
         
            +
                    prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
         
     | 
| 81 | 
         
            +
                    prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
         
     | 
| 82 | 
         
            +
                    prompt_str=prompt_str[:40]
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                    save_videos(batch_samples, self.result_dir, filenames=[prompt_str], fps=self.save_fps)
         
     | 
| 85 | 
         
            +
                    print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
         
     | 
| 86 | 
         
            +
                    model = model.cpu()
         
     | 
| 87 | 
         
            +
                    return os.path.join(self.result_dir, f"{prompt_str}.mp4")
         
     | 
| 88 | 
         
            +
                
         
     | 
| 89 | 
         
            +
                def download_model(self):
         
     | 
| 90 | 
         
            +
                    REPO_ID = 'Doubiiu/DynamiCrafter'
         
     | 
| 91 | 
         
            +
                    filename_list = ['model.ckpt']
         
     | 
| 92 | 
         
            +
                    if not os.path.exists('./checkpoints/dynamicrafter_256_v1/'):
         
     | 
| 93 | 
         
            +
                        os.makedirs('./dynamicrafter_256_v1/')
         
     | 
| 94 | 
         
            +
                    for filename in filename_list:
         
     | 
| 95 | 
         
            +
                        local_file = os.path.join('./checkpoints/dynamicrafter_256_v1/', filename)
         
     | 
| 96 | 
         
            +
                        if not os.path.exists(local_file):
         
     | 
| 97 | 
         
            +
                            hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir='./checkpoints/dynamicrafter_256_v1/', local_dir_use_symlinks=False)
         
     | 
| 98 | 
         
            +
                
         
     | 
| 99 | 
         
            +
            if __name__ == '__main__':
         
     | 
| 100 | 
         
            +
                i2v = Image2Video()
         
     | 
| 101 | 
         
            +
                video_path = i2v.get_image('prompts/art.png','man fishing in a boat at sunset')
         
     | 
| 102 | 
         
            +
                print('done', video_path)
         
     | 
    	
        scripts/run.sh
    ADDED
    
    | 
         @@ -0,0 +1,25 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            name="dynamicrafter_256"
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            ckpt='checkpoints/dynamicrafter_256_v1/model.ckpt'
         
     | 
| 4 | 
         
            +
            config='configs/inference_256_v1.0.yaml'
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            prompt_dir="prompts/"
         
     | 
| 7 | 
         
            +
            res_dir="results"
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            CUDA_VISIBLE_DEVICES=0 python3 scripts/evaluation/inference.py \
         
     | 
| 10 | 
         
            +
            --seed 123 \
         
     | 
| 11 | 
         
            +
            --ckpt_path $ckpt \
         
     | 
| 12 | 
         
            +
            --config $config \
         
     | 
| 13 | 
         
            +
            --savedir $res_dir/$name \
         
     | 
| 14 | 
         
            +
            --n_samples 1 \
         
     | 
| 15 | 
         
            +
            --bs 1 --height 256 --width 256 \
         
     | 
| 16 | 
         
            +
            --unconditional_guidance_scale 7.5 \
         
     | 
| 17 | 
         
            +
            --ddim_steps 50 \
         
     | 
| 18 | 
         
            +
            --ddim_eta 1.0 \
         
     | 
| 19 | 
         
            +
            --prompt_dir $prompt_dir \
         
     | 
| 20 | 
         
            +
            --text_input \
         
     | 
| 21 | 
         
            +
            --video_length 16 \
         
     | 
| 22 | 
         
            +
            --frame_stride 3
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            ## multi-cond CFG: the <unconditional_guidance_scale> is s_txt, <cfg_img> is s_img
         
     | 
| 25 | 
         
            +
            #--multiple_cond_cfg --cfg_img 7.5
         
     | 
    	
        utils/__pycache__/utils.cpython-39.pyc
    ADDED
    
    | 
         Binary file (3.04 kB). View file 
     | 
| 
         |