File size: 9,962 Bytes
eb977fa
 
 
 
6b5de5c
 
eb977fa
 
 
6b5de5c
 
 
eb977fa
 
 
 
 
 
 
 
 
 
6b5de5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb977fa
6b5de5c
eb977fa
6b5de5c
eb977fa
 
 
 
 
 
 
 
 
 
6b5de5c
 
 
 
 
 
 
 
 
eb977fa
6b5de5c
eb977fa
6b5de5c
eb977fa
6b5de5c
eb977fa
 
 
 
6b5de5c
 
 
eb977fa
6b5de5c
 
 
 
 
eb977fa
6b5de5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb977fa
 
 
6b5de5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb977fa
6b5de5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb977fa
6b5de5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb977fa
6b5de5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb977fa
6b5de5c
 
 
 
 
 
 
eb977fa
 
 
6b5de5c
 
 
 
 
 
 
 
 
 
eb977fa
6b5de5c
 
 
 
 
 
 
eb977fa
 
 
6b5de5c
 
 
 
 
eb977fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
"""
LSNet for Artist Style Classification and Clustering
支持画师风格的分类和聚类任务
"""
import torch
import torch.nn as nn
from timm.models import build_model_with_cfg, register_model

from .lsnet import BN_Linear, Conv2d_BN, LSNet


class LSNetArtist(LSNet):
    """
    LSNet模型用于画师风格分类和聚类
    
    特点:
    - 训练时使用分类头进行监督学习
    - 推理时可选择是否使用分类头
    - 去掉分类头输出特征向量用于聚类
    - 保留分类头可以做风格分类
    """
    
    def __init__(self, 
                 img_size=224,
                 patch_size=8,
                 in_chans=3,
                 num_classes=1000,
                 embed_dim=[64, 128, 256, 384],
                 key_dim=[16, 16, 16, 16],
                 depth=[0, 2, 8, 10],
                 num_heads=[3, 3, 3, 4],
                 distillation=False,
                 feature_dim=None,  # 特征向量维度,默认为embed_dim[-1]
                 use_projection=True,  # 是否使用projection层
                 **kwargs):
        default_cfg = kwargs.pop('default_cfg', None)
        pretrained_cfg = kwargs.pop('pretrained_cfg', None)
        pretrained_cfg_overlay = kwargs.pop('pretrained_cfg_overlay', None)

        super().__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_chans=in_chans,
            num_classes=num_classes,
            embed_dim=embed_dim,
            key_dim=key_dim,
            depth=depth,
            num_heads=num_heads,
            distillation=distillation,
            default_cfg=default_cfg,
            pretrained_cfg=pretrained_cfg,
            pretrained_cfg_overlay=pretrained_cfg_overlay,
            **kwargs
        )
        
        self.feature_dim = feature_dim if feature_dim is not None else embed_dim[-1]
        self.use_projection = use_projection
        
        # 如果使用projection层,添加一个映射层来生成固定维度的特征
        if self.use_projection and self.feature_dim != embed_dim[-1]:
            self.projection = nn.Sequential(
                BN_Linear(embed_dim[-1], self.feature_dim),
                nn.ReLU(),
            )
        else:
            self.projection = nn.Identity()
        
        # 重新定义分类头(基于特征维度)
        if num_classes > 0:
            self.head = BN_Linear(self.feature_dim, num_classes)
            if distillation:
                self.head_dist = BN_Linear(self.feature_dim, num_classes)
    
    def forward_features(self, x):
        """
        提取特征,不经过分类头
        用于聚类或特征提取
        """
        x = self.patch_embed(x)
        x = self.blocks1(x)
        x = self.blocks2(x)
        x = self.blocks3(x)
        x = self.blocks4(x)
        x = torch.nn.functional.adaptive_avg_pool2d(x, 1).flatten(1)
        x = self.projection(x)
        return x
    
    def forward(self, x, return_features=False, return_both=False):
        """
        前向传播
        
        Args:
            x: 输入图像
            return_features: 是否只返回特征向量(用于聚类)
                           False时返回分类logits(用于分类)
            return_both: 是否同时返回特征向量和分类logits(用于对比损失)
        
        Returns:
            如果return_features=True: 返回特征向量 (batch_size, feature_dim)
            如果return_both=True: 返回 (features, logits)
            如果return_features=False and return_both=False: 返回分类logits (batch_size, num_classes)
        """
        features = self.forward_features(x)
        
        if return_features:
            # 返回特征向量用于聚类
            return features
        
        # 返回分类结果
        if self.distillation:
            logits = self.head(features), self.head_dist(features)
            if not self.training:
                logits = (logits[0] + logits[1]) / 2
        else:
            logits = self.head(features)
        
        if return_both:
            return features, logits
        
        return logits
    
    def get_features(self, x):
        """
        便捷方法:提取特征向量
        """
        return self.forward(x, return_features=True)
    
    def classify(self, x):
        """
        便捷方法:进行分类
        """
        return self.forward(x, return_features=False)


def _cfg_artist(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 
        'input_size': (3, 224, 224), 
        'pool_size': (4, 4),
        'crop_pct': .9, 
        'interpolation': 'bicubic',
        'mean': (0.485, 0.456, 0.406), 
        'std': (0.229, 0.224, 0.225),
        'first_conv': 'patch_embed.0.c', 
        'classifier': ('head.linear', 'head_dist.linear'),
        **kwargs
    }


default_cfgs_artist = dict(
    lsnet_t_artist = _cfg_artist(),
    lsnet_s_artist = _cfg_artist(),
    lsnet_b_artist = _cfg_artist(),
    lsnet_l_artist = _cfg_artist(),  # Large model for massive training
    lsnet_xl_artist = _cfg_artist(), # Extra Large model for 100k+ classes
    lsnet_xl_artist_448 = _cfg_artist(), # Extra Large model with 448x448 input for massive datasets with 50k+ classes
)


def _create_lsnet_artist(variant, pretrained=False, **kwargs):
    cfg = default_cfgs_artist.get(variant, None)
    if cfg is not None:
        kwargs.setdefault('default_cfg', cfg)
        kwargs.setdefault('pretrained_cfg', cfg)
    model = build_model_with_cfg(
        LSNetArtist,
        variant,
        pretrained,
        **kwargs,
    )
    return model


@register_model
def lsnet_t_artist(num_classes=1000, distillation=False, pretrained=False, 
                   feature_dim=None, use_projection=True, **kwargs):
    """LSNet-T for Artist Style Classification"""
    model = _create_lsnet_artist(
        "lsnet_t_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation, 
        img_size=224,
        patch_size=8,
        embed_dim=[64, 128, 256, 384],
        depth=[0, 2, 8, 10],
        num_heads=[3, 3, 3, 4],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_s_artist(num_classes=1000, distillation=False, pretrained=False,
                   feature_dim=None, use_projection=True, **kwargs):
    """LSNet-S for Artist Style Classification"""
    model = _create_lsnet_artist(
        "lsnet_s_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[96, 192, 320, 448],
        depth=[1, 2, 8, 10],
        num_heads=[3, 3, 3, 4],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_b_artist(num_classes=1000, distillation=False, pretrained=False,
                   feature_dim=None, use_projection=True, **kwargs):
    """LSNet-B for Artist Style Classification"""
    model = _create_lsnet_artist(
        "lsnet_b_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[128, 256, 384, 512],
        depth=[4, 6, 8, 10],
        num_heads=[3, 3, 3, 4],
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_l_artist(num_classes=1000, distillation=False, pretrained=False,
                   feature_dim=None, use_projection=True, **kwargs):
    """LSNet-L for Artist Style Classification (Large model for massive training)"""
    model = _create_lsnet_artist(
        "lsnet_l_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[160, 320, 480, 640],  # 更大的embed_dim
        depth=[6, 8, 12, 14],           # 更深的网络
        num_heads=[4, 4, 4, 4],          # 更多的注意力头
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_xl_artist(num_classes=1000, distillation=False, pretrained=False,
                    feature_dim=None, use_projection=True, **kwargs):
    """LSNet-XL for Artist Style Classification (Extra Large model for massive datasets with 100k+ classes)"""
    model = _create_lsnet_artist(
        "lsnet_xl_artist",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=224,
        patch_size=8,
        embed_dim=[192, 384, 576, 768],  # 超大embed_dim,支持10万+类别
        depth=[8, 12, 16, 20],           # 超深网络,学习复杂特征
        num_heads=[6, 6, 6, 6],           # 更多注意力头
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model


@register_model
def lsnet_xl_artist_448(num_classes=50000, distillation=False, pretrained=False,
                        feature_dim=None, use_projection=True, **kwargs):
    """LSNet-XL-448 for Artist Style Classification (Extra Large model with 448x448 input for massive datasets with 50k+ classes)"""
    model = _create_lsnet_artist(
        "lsnet_xl_artist_448",
        pretrained=pretrained,
        num_classes=num_classes, 
        distillation=distillation,
        img_size=448,
        patch_size=8,
        embed_dim=[192, 384, 576, 768],  # 超大embed_dim,支持10万+类别
        depth=[8, 12, 16, 20],           # 超深网络,学习复杂特征
        num_heads=[6, 6, 6, 6],           # 更多注意力头
        feature_dim=feature_dim,
        use_projection=use_projection,
        **kwargs
    )
    return model