Spaces:
Runtime error
Runtime error
| # Copyright 2021 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import asyncio | |
| import inspect | |
| import os | |
| import shutil | |
| import subprocess | |
| import sys | |
| import tempfile | |
| import unittest | |
| from contextlib import contextmanager | |
| from functools import partial | |
| from pathlib import Path | |
| from typing import List, Union | |
| from unittest import mock | |
| import torch | |
| import accelerate | |
| from ..state import AcceleratorState, PartialState | |
| from ..utils import ( | |
| gather, | |
| is_bnb_available, | |
| is_clearml_available, | |
| is_comet_ml_available, | |
| is_cuda_available, | |
| is_datasets_available, | |
| is_deepspeed_available, | |
| is_dvclive_available, | |
| is_mlu_available, | |
| is_mps_available, | |
| is_npu_available, | |
| is_pandas_available, | |
| is_pippy_available, | |
| is_tensorboard_available, | |
| is_timm_available, | |
| is_torch_version, | |
| is_torch_xla_available, | |
| is_transformers_available, | |
| is_wandb_available, | |
| is_xpu_available, | |
| str_to_bool, | |
| ) | |
| def get_backend(): | |
| if is_torch_xla_available(): | |
| return "xla", torch.cuda.device_count(), torch.cuda.memory_allocated | |
| elif is_cuda_available(): | |
| return "cuda", torch.cuda.device_count(), torch.cuda.memory_allocated | |
| elif is_mps_available(): | |
| return "mps", 1, torch.mps.current_allocated_memory() | |
| elif is_mlu_available(): | |
| return "mlu", torch.mlu.device_count(), torch.mlu.memory_allocated | |
| elif is_npu_available(): | |
| return "npu", torch.npu.device_count(), torch.npu.memory_allocated | |
| elif is_xpu_available(): | |
| return "xpu", torch.xpu.device_count(), torch.xpu.memory_allocated | |
| else: | |
| return "cpu", 1, 0 | |
| torch_device, device_count, memory_allocated_func = get_backend() | |
| def get_launch_command(**kwargs) -> list: | |
| """ | |
| Wraps around `kwargs` to help simplify launching from `subprocess`. | |
| Example: | |
| ```python | |
| # returns ['accelerate', 'launch', '--num_processes=2', '--device_count=2'] | |
| get_launch_command(num_processes=2, device_count=2) | |
| ``` | |
| """ | |
| command = ["accelerate", "launch"] | |
| for k, v in kwargs.items(): | |
| if isinstance(v, bool) and v: | |
| command.append(f"--{k}") | |
| elif v is not None: | |
| command.append(f"--{k}={v}") | |
| return command | |
| DEFAULT_LAUNCH_COMMAND = get_launch_command(num_processes=device_count) | |
| def parse_flag_from_env(key, default=False): | |
| try: | |
| value = os.environ[key] | |
| except KeyError: | |
| # KEY isn't set, default to `default`. | |
| _value = default | |
| else: | |
| # KEY is set, convert it to True or False. | |
| try: | |
| _value = str_to_bool(value) | |
| except ValueError: | |
| # More values are supported, but let's keep the message simple. | |
| raise ValueError(f"If set, {key} must be yes or no.") | |
| return _value | |
| _run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False) | |
| def skip(test_case): | |
| "Decorator that skips a test unconditionally" | |
| return unittest.skip("Test was skipped")(test_case) | |
| def slow(test_case): | |
| """ | |
| Decorator marking a test as slow. Slow tests are skipped by default. Set the RUN_SLOW environment variable to a | |
| truthy value to run them. | |
| """ | |
| return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case) | |
| def require_cpu(test_case): | |
| """ | |
| Decorator marking a test that must be only ran on the CPU. These tests are skipped when a GPU is available. | |
| """ | |
| return unittest.skipUnless(torch_device == "cpu", "test requires only a CPU")(test_case) | |
| def require_non_cpu(test_case): | |
| """ | |
| Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no | |
| hardware accelerator available. | |
| """ | |
| return unittest.skipUnless(torch_device != "cpu", "test requires a GPU")(test_case) | |
| def require_cuda(test_case): | |
| """ | |
| Decorator marking a test that requires CUDA. These tests are skipped when there are no GPU available or when | |
| TorchXLA is available. | |
| """ | |
| return unittest.skipUnless(is_cuda_available() and not is_torch_xla_available(), "test requires a GPU")(test_case) | |
| def require_xpu(test_case): | |
| """ | |
| Decorator marking a test that requires XPU. These tests are skipped when there are no XPU available. | |
| """ | |
| return unittest.skipUnless(is_xpu_available(), "test requires a XPU")(test_case) | |
| def require_non_xpu(test_case): | |
| """ | |
| Decorator marking a test that should be skipped for XPU. | |
| """ | |
| return unittest.skipUnless(torch_device != "xpu", "test requires a non-XPU")(test_case) | |
| def require_mlu(test_case): | |
| """ | |
| Decorator marking a test that requires MLU. These tests are skipped when there are no MLU available. | |
| """ | |
| return unittest.skipUnless(is_mlu_available(), "test require a MLU")(test_case) | |
| def require_npu(test_case): | |
| """ | |
| Decorator marking a test that requires NPU. These tests are skipped when there are no NPU available. | |
| """ | |
| return unittest.skipUnless(is_npu_available(), "test require a NPU")(test_case) | |
| def require_mps(test_case): | |
| """ | |
| Decorator marking a test that requires MPS backend. These tests are skipped when torch doesn't support `mps` | |
| backend. | |
| """ | |
| return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`")(test_case) | |
| def require_huggingface_suite(test_case): | |
| """ | |
| Decorator marking a test that requires transformers and datasets. These tests are skipped when they are not. | |
| """ | |
| return unittest.skipUnless( | |
| is_transformers_available() and is_datasets_available(), | |
| "test requires the Hugging Face suite", | |
| )(test_case) | |
| def require_transformers(test_case): | |
| """ | |
| Decorator marking a test that requires transformers. These tests are skipped when they are not. | |
| """ | |
| return unittest.skipUnless(is_transformers_available(), "test requires the transformers library")(test_case) | |
| def require_timm(test_case): | |
| """ | |
| Decorator marking a test that requires transformers. These tests are skipped when they are not. | |
| """ | |
| return unittest.skipUnless(is_timm_available(), "test requires the timm library")(test_case) | |
| def require_bnb(test_case): | |
| """ | |
| Decorator marking a test that requires bitsandbytes. These tests are skipped when they are not. | |
| """ | |
| return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library")(test_case) | |
| def require_tpu(test_case): | |
| """ | |
| Decorator marking a test that requires TPUs. These tests are skipped when there are no TPUs available. | |
| """ | |
| return unittest.skipUnless(is_torch_xla_available(check_is_tpu=True), "test requires TPU")(test_case) | |
| def require_non_torch_xla(test_case): | |
| """ | |
| Decorator marking a test as requiring an environment without TorchXLA. These tests are skipped when TorchXLA is | |
| available. | |
| """ | |
| return unittest.skipUnless(not is_torch_xla_available(), "test requires an env without TorchXLA")(test_case) | |
| def require_single_device(test_case): | |
| """ | |
| Decorator marking a test that requires a single device. These tests are skipped when there is no hardware | |
| accelerator available or number of devices is more than one. | |
| """ | |
| return unittest.skipUnless(torch_device != "cpu" and device_count == 1, "test requires a hardware accelerator")( | |
| test_case | |
| ) | |
| def require_single_gpu(test_case): | |
| """ | |
| Decorator marking a test that requires CUDA on a single GPU. These tests are skipped when there are no GPU | |
| available or number of GPUs is more than one. | |
| """ | |
| return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU")(test_case) | |
| def require_single_xpu(test_case): | |
| """ | |
| Decorator marking a test that requires CUDA on a single XPU. These tests are skipped when there are no XPU | |
| available or number of xPUs is more than one. | |
| """ | |
| return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU")(test_case) | |
| def require_multi_device(test_case): | |
| """ | |
| Decorator marking a test that requires a multi-device setup. These tests are skipped on a machine without multiple | |
| devices. | |
| """ | |
| return unittest.skipUnless(device_count > 1, "test requires multiple hardware accelerators")(test_case) | |
| def require_multi_gpu(test_case): | |
| """ | |
| Decorator marking a test that requires a multi-GPU setup. These tests are skipped on a machine without multiple | |
| GPUs. | |
| """ | |
| return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case) | |
| def require_multi_xpu(test_case): | |
| """ | |
| Decorator marking a test that requires a multi-XPU setup. These tests are skipped on a machine without multiple | |
| XPUs. | |
| """ | |
| return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs")(test_case) | |
| def require_deepspeed(test_case): | |
| """ | |
| Decorator marking a test that requires DeepSpeed installed. These tests are skipped when DeepSpeed isn't installed | |
| """ | |
| return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed")(test_case) | |
| def require_fsdp(test_case): | |
| """ | |
| Decorator marking a test that requires FSDP installed. These tests are skipped when FSDP isn't installed | |
| """ | |
| return unittest.skipUnless(is_torch_version(">=", "1.12.0"), "test requires torch version >= 1.12.0")(test_case) | |
| def require_torch_min_version(test_case=None, version=None): | |
| """ | |
| Decorator marking that a test requires a particular torch version to be tested. These tests are skipped when an | |
| installed torch version is less than the required one. | |
| """ | |
| if test_case is None: | |
| return partial(require_torch_min_version, version=version) | |
| return unittest.skipUnless(is_torch_version(">=", version), f"test requires torch version >= {version}")(test_case) | |
| def require_tensorboard(test_case): | |
| """ | |
| Decorator marking a test that requires tensorboard installed. These tests are skipped when tensorboard isn't | |
| installed | |
| """ | |
| return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard")(test_case) | |
| def require_wandb(test_case): | |
| """ | |
| Decorator marking a test that requires wandb installed. These tests are skipped when wandb isn't installed | |
| """ | |
| return unittest.skipUnless(is_wandb_available(), "test requires wandb")(test_case) | |
| def require_comet_ml(test_case): | |
| """ | |
| Decorator marking a test that requires comet_ml installed. These tests are skipped when comet_ml isn't installed | |
| """ | |
| return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(test_case) | |
| def require_clearml(test_case): | |
| """ | |
| Decorator marking a test that requires clearml installed. These tests are skipped when clearml isn't installed | |
| """ | |
| return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case) | |
| def require_dvclive(test_case): | |
| """ | |
| Decorator marking a test that requires dvclive installed. These tests are skipped when dvclive isn't installed | |
| """ | |
| return unittest.skipUnless(is_dvclive_available(), "test requires dvclive")(test_case) | |
| def require_pandas(test_case): | |
| """ | |
| Decorator marking a test that requires pandas installed. These tests are skipped when pandas isn't installed | |
| """ | |
| return unittest.skipUnless(is_pandas_available(), "test requires pandas")(test_case) | |
| def require_pippy(test_case): | |
| """ | |
| Decorator marking a test that requires pippy installed. These tests are skipped when pippy isn't installed | |
| """ | |
| return unittest.skipUnless(is_pippy_available(), "test requires pippy")(test_case) | |
| _atleast_one_tracker_available = ( | |
| any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() | |
| ) | |
| def require_trackers(test_case): | |
| """ | |
| Decorator marking that a test requires at least one tracking library installed. These tests are skipped when none | |
| are installed | |
| """ | |
| return unittest.skipUnless( | |
| _atleast_one_tracker_available, | |
| "test requires at least one tracker to be available and for `comet_ml` to not be installed", | |
| )(test_case) | |
| class TempDirTestCase(unittest.TestCase): | |
| """ | |
| A TestCase class that keeps a single `tempfile.TemporaryDirectory` open for the duration of the class, wipes its | |
| data at the start of a test, and then destroyes it at the end of the TestCase. | |
| Useful for when a class or API requires a single constant folder throughout it's use, such as Weights and Biases | |
| The temporary directory location will be stored in `self.tmpdir` | |
| """ | |
| clear_on_setup = True | |
| def setUpClass(cls): | |
| "Creates a `tempfile.TemporaryDirectory` and stores it in `cls.tmpdir`" | |
| cls.tmpdir = Path(tempfile.mkdtemp()) | |
| def tearDownClass(cls): | |
| "Remove `cls.tmpdir` after test suite has finished" | |
| if os.path.exists(cls.tmpdir): | |
| shutil.rmtree(cls.tmpdir) | |
| def setUp(self): | |
| "Destroy all contents in `self.tmpdir`, but not `self.tmpdir`" | |
| if self.clear_on_setup: | |
| for path in self.tmpdir.glob("**/*"): | |
| if path.is_file(): | |
| path.unlink() | |
| elif path.is_dir(): | |
| shutil.rmtree(path) | |
| class AccelerateTestCase(unittest.TestCase): | |
| """ | |
| A TestCase class that will reset the accelerator state at the end of every test. Every test that checks or utilizes | |
| the `AcceleratorState` class should inherit from this to avoid silent failures due to state being shared between | |
| tests. | |
| """ | |
| def tearDown(self): | |
| super().tearDown() | |
| # Reset the state of the AcceleratorState singleton. | |
| AcceleratorState._reset_state() | |
| PartialState._reset_state() | |
| class MockingTestCase(unittest.TestCase): | |
| """ | |
| A TestCase class designed to dynamically add various mockers that should be used in every test, mimicking the | |
| behavior of a class-wide mock when defining one normally will not do. | |
| Useful when a mock requires specific information available only initialized after `TestCase.setUpClass`, such as | |
| setting an environment variable with that information. | |
| The `add_mocks` function should be ran at the end of a `TestCase`'s `setUp` function, after a call to | |
| `super().setUp()` such as: | |
| ```python | |
| def setUp(self): | |
| super().setUp() | |
| mocks = mock.patch.dict(os.environ, {"SOME_ENV_VAR", "SOME_VALUE"}) | |
| self.add_mocks(mocks) | |
| ``` | |
| """ | |
| def add_mocks(self, mocks: Union[mock.Mock, List[mock.Mock]]): | |
| """ | |
| Add custom mocks for tests that should be repeated on each test. Should be called during | |
| `MockingTestCase.setUp`, after `super().setUp()`. | |
| Args: | |
| mocks (`mock.Mock` or list of `mock.Mock`): | |
| Mocks that should be added to the `TestCase` after `TestCase.setUpClass` has been run | |
| """ | |
| self.mocks = mocks if isinstance(mocks, (tuple, list)) else [mocks] | |
| for m in self.mocks: | |
| m.start() | |
| self.addCleanup(m.stop) | |
| def are_the_same_tensors(tensor): | |
| state = AcceleratorState() | |
| tensor = tensor[None].clone().to(state.device) | |
| tensors = gather(tensor).cpu() | |
| tensor = tensor[0].cpu() | |
| for i in range(tensors.shape[0]): | |
| if not torch.equal(tensors[i], tensor): | |
| return False | |
| return True | |
| class _RunOutput: | |
| def __init__(self, returncode, stdout, stderr): | |
| self.returncode = returncode | |
| self.stdout = stdout | |
| self.stderr = stderr | |
| async def _read_stream(stream, callback): | |
| while True: | |
| line = await stream.readline() | |
| if line: | |
| callback(line) | |
| else: | |
| break | |
| async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> _RunOutput: | |
| if echo: | |
| print("\nRunning: ", " ".join(cmd)) | |
| p = await asyncio.create_subprocess_exec( | |
| cmd[0], | |
| *cmd[1:], | |
| stdin=stdin, | |
| stdout=asyncio.subprocess.PIPE, | |
| stderr=asyncio.subprocess.PIPE, | |
| env=env, | |
| ) | |
| # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe | |
| # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait | |
| # | |
| # If it starts hanging, will need to switch to the following code. The problem is that no data | |
| # will be seen until it's done and if it hangs for example there will be no debug info. | |
| # out, err = await p.communicate() | |
| # return _RunOutput(p.returncode, out, err) | |
| out = [] | |
| err = [] | |
| def tee(line, sink, pipe, label=""): | |
| line = line.decode("utf-8").rstrip() | |
| sink.append(line) | |
| if not quiet: | |
| print(label, line, file=pipe) | |
| # XXX: the timeout doesn't seem to make any difference here | |
| await asyncio.wait( | |
| [ | |
| asyncio.create_task(_read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:"))), | |
| asyncio.create_task(_read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:"))), | |
| ], | |
| timeout=timeout, | |
| ) | |
| return _RunOutput(await p.wait(), out, err) | |
| def execute_subprocess_async(cmd: list, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput: | |
| # Cast every path in `cmd` to a string | |
| for i, c in enumerate(cmd): | |
| if isinstance(c, Path): | |
| cmd[i] = str(c) | |
| loop = asyncio.get_event_loop() | |
| result = loop.run_until_complete( | |
| _stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo) | |
| ) | |
| cmd_str = " ".join(cmd) | |
| if result.returncode > 0: | |
| stderr = "\n".join(result.stderr) | |
| raise RuntimeError( | |
| f"'{cmd_str}' failed with returncode {result.returncode}\n\n" | |
| f"The combined stderr from workers follows:\n{stderr}" | |
| ) | |
| return result | |
| class SubprocessCallException(Exception): | |
| pass | |
| def run_command(command: List[str], return_stdout=False, env=None): | |
| """ | |
| Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture | |
| if an error occured while running `command` | |
| """ | |
| # Cast every path in `command` to a string | |
| for i, c in enumerate(command): | |
| if isinstance(c, Path): | |
| command[i] = str(c) | |
| if env is None: | |
| env = os.environ.copy() | |
| try: | |
| output = subprocess.check_output(command, stderr=subprocess.STDOUT, env=env) | |
| if return_stdout: | |
| if hasattr(output, "decode"): | |
| output = output.decode("utf-8") | |
| return output | |
| except subprocess.CalledProcessError as e: | |
| raise SubprocessCallException( | |
| f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}" | |
| ) from e | |
| def path_in_accelerate_package(*components: str) -> Path: | |
| """ | |
| Get a path within the `accelerate` package's directory. | |
| Args: | |
| *components: Components of the path to join after the package directory. | |
| Returns: | |
| `Path`: The path to the requested file or directory. | |
| """ | |
| accelerate_package_dir = Path(inspect.getfile(accelerate)).parent | |
| return accelerate_package_dir.joinpath(*components) | |
| def assert_exception(exception_class: Exception, msg: str = None) -> bool: | |
| """ | |
| Context manager to assert that the right `Exception` class was raised. | |
| If `msg` is provided, will check that the message is contained in the raised exception. | |
| """ | |
| was_ran = False | |
| try: | |
| yield | |
| was_ran = True | |
| except Exception as e: | |
| assert isinstance(e, exception_class), f"Expected exception of type {exception_class} but got {type(e)}" | |
| if msg is not None: | |
| assert msg in str(e), f"Expected message '{msg}' to be in exception but got '{str(e)}'" | |
| if was_ran: | |
| raise AssertionError(f"Expected exception of type {exception_class} but ran without issue.") | |