Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import numpy as np | |
| import faiss | |
| from faiss.contrib.inspect_tools import get_invlist_sizes | |
| def add_preassigned(index_ivf, x, a, ids=None): | |
| """ | |
| Add elements to an IVF index, where the assignment is already computed | |
| """ | |
| n, d = x.shape | |
| assert a.shape == (n, ) | |
| if isinstance(index_ivf, faiss.IndexBinaryIVF): | |
| d *= 8 | |
| assert d == index_ivf.d | |
| if ids is not None: | |
| assert ids.shape == (n, ) | |
| ids = faiss.swig_ptr(ids) | |
| index_ivf.add_core( | |
| n, faiss.swig_ptr(x), ids, faiss.swig_ptr(a) | |
| ) | |
| def search_preassigned(index_ivf, xq, k, list_nos, coarse_dis=None): | |
| """ | |
| Perform a search in the IVF index, with predefined lists to search into. | |
| Supports indexes with pretransforms (as opposed to the | |
| IndexIVF.search_preassigned, that cannot be applied with pretransform). | |
| """ | |
| if isinstance(index_ivf, faiss.IndexPreTransform): | |
| assert index_ivf.chain.size() == 1, "chain must have only one component" | |
| transform = faiss.downcast_VectorTransform(index_ivf.chain.at(0)) | |
| xq = transform.apply(xq) | |
| index_ivf = faiss.downcast_index(index_ivf.index) | |
| n, d = xq.shape | |
| if isinstance(index_ivf, faiss.IndexBinaryIVF): | |
| d *= 8 | |
| dis_type = "int32" | |
| else: | |
| dis_type = "float32" | |
| assert d == index_ivf.d | |
| assert list_nos.shape == (n, index_ivf.nprobe) | |
| # the coarse distances are used in IVFPQ with L2 distance and | |
| # by_residual=True otherwise we provide dummy coarse_dis | |
| if coarse_dis is None: | |
| coarse_dis = np.zeros((n, index_ivf.nprobe), dtype=dis_type) | |
| else: | |
| assert coarse_dis.shape == (n, index_ivf.nprobe) | |
| return index_ivf.search_preassigned(xq, k, list_nos, coarse_dis) | |
| def range_search_preassigned(index_ivf, x, radius, list_nos, coarse_dis=None): | |
| """ | |
| Perform a range search in the IVF index, with predefined lists to | |
| search into | |
| """ | |
| n, d = x.shape | |
| if isinstance(index_ivf, faiss.IndexBinaryIVF): | |
| d *= 8 | |
| dis_type = "int32" | |
| else: | |
| dis_type = "float32" | |
| # the coarse distances are used in IVFPQ with L2 distance and | |
| # by_residual=True otherwise we provide dummy coarse_dis | |
| if coarse_dis is None: | |
| coarse_dis = np.empty((n, index_ivf.nprobe), dtype=dis_type) | |
| else: | |
| assert coarse_dis.shape == (n, index_ivf.nprobe) | |
| assert d == index_ivf.d | |
| assert list_nos.shape == (n, index_ivf.nprobe) | |
| res = faiss.RangeSearchResult(n) | |
| sp = faiss.swig_ptr | |
| index_ivf.range_search_preassigned_c( | |
| n, sp(x), radius, | |
| sp(list_nos), sp(coarse_dis), | |
| res | |
| ) | |
| # get pointers and copy them | |
| lims = faiss.rev_swig_ptr(res.lims, n + 1).copy() | |
| num_results = int(lims[-1]) | |
| dist = faiss.rev_swig_ptr(res.distances, num_results).copy() | |
| indices = faiss.rev_swig_ptr(res.labels, num_results).copy() | |
| return lims, dist, indices | |
| def replace_ivf_quantizer(index_ivf, new_quantizer): | |
| """ replace the IVF quantizer with a flat quantizer and return the | |
| old quantizer""" | |
| if new_quantizer.ntotal == 0: | |
| centroids = index_ivf.quantizer.reconstruct_n() | |
| new_quantizer.train(centroids) | |
| new_quantizer.add(centroids) | |
| else: | |
| assert new_quantizer.ntotal == index_ivf.nlist | |
| # cleanly dealloc old quantizer | |
| old_own = index_ivf.own_fields | |
| index_ivf.own_fields = False | |
| old_quantizer = faiss.downcast_index(index_ivf.quantizer) | |
| old_quantizer.this.own(old_own) | |
| index_ivf.quantizer = new_quantizer | |
| if hasattr(index_ivf, "referenced_objects"): | |
| index_ivf.referenced_objects.append(new_quantizer) | |
| else: | |
| index_ivf.referenced_objects = [new_quantizer] | |
| return old_quantizer | |
| def permute_invlists(index_ivf, perm): | |
| """ Apply some permutation to the inverted lists, and modify the quantizer | |
| entries accordingly. | |
| Perm is an array of size nlist, where old_index = perm[new_index] | |
| """ | |
| nlist, = perm.shape | |
| assert index_ivf.nlist == nlist | |
| quantizer = faiss.downcast_index(index_ivf.quantizer) | |
| assert quantizer.ntotal == index_ivf.nlist | |
| perm = np.ascontiguousarray(perm, dtype='int64') | |
| # just make sure it's a permutation... | |
| bc = np.bincount(perm, minlength=nlist) | |
| assert np.all(bc == np.ones(nlist, dtype=int)) | |
| # handle quantizer | |
| quantizer.permute_entries(perm) | |
| # handle inverted lists | |
| invlists = faiss.downcast_InvertedLists(index_ivf.invlists) | |
| invlists.permute_invlists(faiss.swig_ptr(perm)) | |
| def sort_invlists_by_size(index_ivf): | |
| invlist_sizes = get_invlist_sizes(index_ivf.invlists) | |
| perm = np.argsort(invlist_sizes) | |
| permute_invlists(index_ivf, perm) | |