Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import logging | |
| from PIL import Image | |
| # Setup logging | |
| logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
| logger = logging.getLogger(__name__) | |
| def describe_scene(detection=None, segmentation=None, depth=None): | |
| """ | |
| Generates a structured scene summary with metrics for detection, segmentation, and depth. | |
| Args: | |
| detection (list): List of detected objects with class names and bounding boxes. | |
| segmentation (numpy.ndarray): Segmentation mask as a 2D numpy array. | |
| depth (numpy.ndarray): Depth map as a 2D numpy array. | |
| Returns: | |
| dict: Structured scene description with metrics. | |
| """ | |
| logger.info("Generating scene summary...") | |
| description = {"scene_summary": {}} | |
| # Detection Summary with Metrics | |
| if detection: | |
| logger.info("Adding detection results to scene summary.") | |
| description["scene_summary"]["objects"] = detection | |
| confidences = [obj.get("confidence", 0) for obj in detection] | |
| description["scene_summary"]["detection_metrics"] = { | |
| "objects_detected": len(detection), | |
| "average_confidence": float(np.mean(confidences)) if confidences else 0.0 | |
| } | |
| # Segmentation Summary with Coverage Metrics | |
| if segmentation is not None: | |
| logger.info("Summarizing segmentation coverage.") | |
| unique, counts = np.unique(segmentation, return_counts=True) | |
| total = segmentation.size | |
| coverage = [ | |
| {"class_id": int(class_id), "coverage": f"{(count / total) * 100:.2f}%"} | |
| for class_id, count in zip(unique, counts) | |
| ] | |
| dominant_class = max(coverage, key=lambda x: float(x["coverage"].strip('%'))) | |
| description["scene_summary"]["segmentation_summary"] = coverage | |
| description["scene_summary"]["dominant_class"] = dominant_class | |
| # Depth Summary with Metrics | |
| if depth is not None: | |
| logger.info("Summarizing depth information.") | |
| mean_depth = float(np.mean(depth)) | |
| min_depth = float(np.min(depth)) | |
| max_depth = float(np.max(depth)) | |
| std_depth = float(np.std(depth)) | |
| description["scene_summary"]["depth_summary"] = { | |
| "mean_depth": mean_depth, | |
| "min_depth": min_depth, | |
| "max_depth": max_depth, | |
| "std_depth": std_depth | |
| } | |
| logger.info("Scene summary generation complete.") | |
| return description | |