Spaces:
Runtime error
Runtime error
Update models/depth/depth_estimator.py
Browse files- models/depth/depth_estimator.py +85 -85
models/depth/depth_estimator.py
CHANGED
|
@@ -1,85 +1,85 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
import numpy as np
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import logging
|
| 6 |
-
from utils.model_downloader import download_model_if_needed
|
| 7 |
-
|
| 8 |
-
# Configure Logger
|
| 9 |
-
logger = logging.getLogger(__name__)
|
| 10 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
class DepthEstimator:
|
| 14 |
-
"""
|
| 15 |
-
Generalized Depth Estimation Model Wrapper for MiDaS and DPT models.
|
| 16 |
-
Supports: MiDaS v2.1 Small, MiDaS v2.1 Large, DPT Hybrid, DPT Large.
|
| 17 |
-
"""
|
| 18 |
-
|
| 19 |
-
def __init__(self, model_key="midas_v21_small_256", weights_dir="models/depth/weights", device="cpu"):
|
| 20 |
-
"""
|
| 21 |
-
Initialize the Depth Estimation model.
|
| 22 |
-
|
| 23 |
-
Args:
|
| 24 |
-
model_key (str): Model identifier as defined in model_downloader.py.
|
| 25 |
-
weights_dir (str): Directory to store/download model weights.
|
| 26 |
-
device (str): Inference device ("cpu" or "cuda").
|
| 27 |
-
"""
|
| 28 |
-
weights_path = os.path.join(weights_dir, f"{model_key}.pt")
|
| 29 |
-
download_model_if_needed(model_key, weights_path)
|
| 30 |
-
|
| 31 |
-
logger.info(f"Loading Depth model '{model_key}' from MiDaS hub")
|
| 32 |
-
self.device = device
|
| 33 |
-
self.model_type = self._resolve_model_type(model_key)
|
| 34 |
-
self.midas = torch.hub.load("intel-isl/MiDaS", self.model_type).to(self.device).eval()
|
| 35 |
-
self.transform = self._resolve_transform()
|
| 36 |
-
|
| 37 |
-
def _resolve_model_type(self, model_key):
|
| 38 |
-
"""
|
| 39 |
-
Maps model_key to MiDaS hub model type.
|
| 40 |
-
"""
|
| 41 |
-
mapping = {
|
| 42 |
-
"midas_v21_small_256": "MiDaS_small",
|
| 43 |
-
"midas_v21_384": "MiDaS",
|
| 44 |
-
"dpt_hybrid_384": "DPT_Hybrid",
|
| 45 |
-
"dpt_large_384": "DPT_Large",
|
| 46 |
-
"dpt_swin2_large_384": "DPT_Large", # fallback to DPT_Large if not explicitly supported
|
| 47 |
-
"dpt_beit_large_512": "DPT_Large", # fallback to DPT_Large if not explicitly supported
|
| 48 |
-
}
|
| 49 |
-
return mapping.get(model_key, "MiDaS_small")
|
| 50 |
-
|
| 51 |
-
def _resolve_transform(self):
|
| 52 |
-
"""
|
| 53 |
-
Returns the correct transformation pipeline based on model type.
|
| 54 |
-
"""
|
| 55 |
-
transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
| 56 |
-
if self.model_type == "MiDaS_small":
|
| 57 |
-
return transforms.small_transform
|
| 58 |
-
else:
|
| 59 |
-
return transforms.default_transform
|
| 60 |
-
|
| 61 |
-
def predict(self, image: Image.Image):
|
| 62 |
-
"""
|
| 63 |
-
Generates a depth map for the given image.
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
image (PIL.Image.Image): Input image.
|
| 67 |
-
|
| 68 |
-
Returns:
|
| 69 |
-
np.ndarray: Depth map as a 2D numpy array.
|
| 70 |
-
"""
|
| 71 |
-
logger.info("Running depth estimation")
|
| 72 |
-
input_tensor = self.transform(image).to(self.device)
|
| 73 |
-
|
| 74 |
-
with torch.no_grad():
|
| 75 |
-
prediction = self.midas(input_tensor)
|
| 76 |
-
prediction = torch.nn.functional.interpolate(
|
| 77 |
-
prediction.unsqueeze(1),
|
| 78 |
-
size=image.size[::-1],
|
| 79 |
-
mode="bicubic",
|
| 80 |
-
align_corners=False,
|
| 81 |
-
).squeeze()
|
| 82 |
-
|
| 83 |
-
depth_map = prediction.cpu().numpy()
|
| 84 |
-
logger.info("Depth estimation completed successfully")
|
| 85 |
-
return depth_map
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import logging
|
| 6 |
+
from utils.model_downloader import download_model_if_needed
|
| 7 |
+
|
| 8 |
+
# Configure Logger
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DepthEstimator:
|
| 14 |
+
"""
|
| 15 |
+
Generalized Depth Estimation Model Wrapper for MiDaS and DPT models.
|
| 16 |
+
Supports: MiDaS v2.1 Small, MiDaS v2.1 Large, DPT Hybrid, DPT Large.
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self, model_key="midas_v21_small_256", weights_dir="models/depth/weights", device="cpu"):
|
| 20 |
+
"""
|
| 21 |
+
Initialize the Depth Estimation model.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
model_key (str): Model identifier as defined in model_downloader.py.
|
| 25 |
+
weights_dir (str): Directory to store/download model weights.
|
| 26 |
+
device (str): Inference device ("cpu" or "cuda").
|
| 27 |
+
"""
|
| 28 |
+
weights_path = os.path.join(weights_dir, f"{model_key}.pt")
|
| 29 |
+
download_model_if_needed(model_key, weights_path)
|
| 30 |
+
|
| 31 |
+
logger.info(f"Loading Depth model '{model_key}' from MiDaS hub")
|
| 32 |
+
self.device = device
|
| 33 |
+
self.model_type = self._resolve_model_type(model_key)
|
| 34 |
+
self.midas = torch.hub.load("intel-isl/MiDaS", self.model_type).to(self.device).eval()
|
| 35 |
+
self.transform = self._resolve_transform()
|
| 36 |
+
|
| 37 |
+
def _resolve_model_type(self, model_key):
|
| 38 |
+
"""
|
| 39 |
+
Maps model_key to MiDaS hub model type.
|
| 40 |
+
"""
|
| 41 |
+
mapping = {
|
| 42 |
+
"midas_v21_small_256": "MiDaS_small",
|
| 43 |
+
"midas_v21_384": "MiDaS",
|
| 44 |
+
"dpt_hybrid_384": "DPT_Hybrid",
|
| 45 |
+
"dpt_large_384": "DPT_Large",
|
| 46 |
+
"dpt_swin2_large_384": "DPT_Large", # fallback to DPT_Large if not explicitly supported
|
| 47 |
+
"dpt_beit_large_512": "DPT_Large", # fallback to DPT_Large if not explicitly supported
|
| 48 |
+
}
|
| 49 |
+
return mapping.get(model_key, "MiDaS_small")
|
| 50 |
+
|
| 51 |
+
def _resolve_transform(self):
|
| 52 |
+
"""
|
| 53 |
+
Returns the correct transformation pipeline based on model type.
|
| 54 |
+
"""
|
| 55 |
+
transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
|
| 56 |
+
if self.model_type == "MiDaS_small":
|
| 57 |
+
return transforms.small_transform
|
| 58 |
+
else:
|
| 59 |
+
return transforms.default_transform
|
| 60 |
+
|
| 61 |
+
def predict(self, image: Image.Image, **kwargs):
|
| 62 |
+
"""
|
| 63 |
+
Generates a depth map for the given image.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
image (PIL.Image.Image): Input image.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
np.ndarray: Depth map as a 2D numpy array.
|
| 70 |
+
"""
|
| 71 |
+
logger.info("Running depth estimation")
|
| 72 |
+
input_tensor = self.transform(image).to(self.device)
|
| 73 |
+
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
prediction = self.midas(input_tensor)
|
| 76 |
+
prediction = torch.nn.functional.interpolate(
|
| 77 |
+
prediction.unsqueeze(1),
|
| 78 |
+
size=image.size[::-1],
|
| 79 |
+
mode="bicubic",
|
| 80 |
+
align_corners=False,
|
| 81 |
+
).squeeze()
|
| 82 |
+
|
| 83 |
+
depth_map = prediction.cpu().numpy()
|
| 84 |
+
logger.info("Depth estimation completed successfully")
|
| 85 |
+
return depth_map
|