Spaces:
Runtime error
Runtime error
Update core/describe_scene.py
Browse files- core/describe_scene.py +61 -59
core/describe_scene.py
CHANGED
|
@@ -1,59 +1,61 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
-
import logging
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
description["scene_summary"]["
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
"
|
| 55 |
-
"
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import logging
|
| 3 |
+
|
| 4 |
+
# Setup logging
|
| 5 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 6 |
+
logger = logging.getLogger(__name__)
|
| 7 |
+
|
| 8 |
+
def describe_scene(detection=None, segmentation=None, depth=None):
|
| 9 |
+
"""
|
| 10 |
+
Generates a structured scene summary with metrics for detection, segmentation, and depth.
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
detection (list): List of detected objects with class names and bounding boxes.
|
| 14 |
+
segmentation (numpy.ndarray): Segmentation mask as a 2D numpy array.
|
| 15 |
+
depth (numpy.ndarray): Depth map as a 2D numpy array.
|
| 16 |
+
|
| 17 |
+
Returns:
|
| 18 |
+
dict: Structured scene description with metrics.
|
| 19 |
+
"""
|
| 20 |
+
logger.info("Generating scene summary...")
|
| 21 |
+
description = {"scene_summary": {}}
|
| 22 |
+
|
| 23 |
+
# Detection Summary with Metrics
|
| 24 |
+
if detection:
|
| 25 |
+
logger.info("Adding detection results to scene summary.")
|
| 26 |
+
description["scene_summary"]["objects"] = detection
|
| 27 |
+
confidences = [obj.get("confidence", 0) for obj in detection]
|
| 28 |
+
description["scene_summary"]["detection_metrics"] = {
|
| 29 |
+
"objects_detected": len(detection),
|
| 30 |
+
"average_confidence": float(np.mean(confidences)) if confidences else 0.0
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
# Segmentation Summary with Coverage Metrics
|
| 34 |
+
if segmentation is not None:
|
| 35 |
+
logger.info("Summarizing segmentation coverage.")
|
| 36 |
+
unique, counts = np.unique(segmentation, return_counts=True)
|
| 37 |
+
total = segmentation.size
|
| 38 |
+
coverage = [
|
| 39 |
+
{"class_id": int(class_id), "coverage": f"{(count / total) * 100:.2f}%"}
|
| 40 |
+
for class_id, count in zip(unique, counts)
|
| 41 |
+
]
|
| 42 |
+
dominant_class = max(coverage, key=lambda x: float(x["coverage"].strip('%')))
|
| 43 |
+
description["scene_summary"]["segmentation_summary"] = coverage
|
| 44 |
+
description["scene_summary"]["dominant_class"] = dominant_class
|
| 45 |
+
|
| 46 |
+
# Depth Summary with Metrics
|
| 47 |
+
if depth is not None:
|
| 48 |
+
logger.info("Summarizing depth information.")
|
| 49 |
+
mean_depth = float(np.mean(depth))
|
| 50 |
+
min_depth = float(np.min(depth))
|
| 51 |
+
max_depth = float(np.max(depth))
|
| 52 |
+
std_depth = float(np.std(depth))
|
| 53 |
+
description["scene_summary"]["depth_summary"] = {
|
| 54 |
+
"mean_depth": mean_depth,
|
| 55 |
+
"min_depth": min_depth,
|
| 56 |
+
"max_depth": max_depth,
|
| 57 |
+
"std_depth": std_depth
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
logger.info("Scene summary generation complete.")
|
| 61 |
+
return description
|