Spaces:
Sleeping
Sleeping
File size: 7,383 Bytes
279ed8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""
A FastAPI application for serving the translation model, inspired by interactive_translate.py.
"""
import torch
from transformers import M2M100ForConditionalGeneration, NllbTokenizer
from fastapi import FastAPI, HTTPException, UploadFile, File
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel
import logging
from typing import List
import fitz # PyMuPDF
import shutil
import os
# --- 1. App Configuration ---
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="Saksi Translation API",
description="A simple API for translating text and PDFs to English.",
version="2.0",
)
app.mount("/frontend", StaticFiles(directory="frontend"), name="frontend")
# --- 2. Global Variables ---
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SUPPORTED_LANGUAGES = {
"nepali": "nep_Npan",
"sinhala": "sin_Sinh",
}
MODEL_PATH = "models/nllb-finetuned-nepali-en"
model = None
tokenizer = None
# --- 3. Pydantic Models ---
class TranslationRequest(BaseModel):
text: str
source_language: str
class TranslationResponse(BaseModel):
original_text: str
translated_text: str
source_language: str
class BatchTranslationRequest(BaseModel):
texts: List[str]
source_language: str
class BatchTranslationResponse(BaseModel):
original_texts: List[str]
translated_texts: List[str]
source_language: str
class PdfTranslationResponse(BaseModel):
filename: str
translated_text: str
source_language: str
# --- 4. Helper Functions ---
def load_model_and_tokenizer(model_path):
"""Loads the model and tokenizer from the given path."""
global model, tokenizer
logger.info(f"Loading model on {DEVICE.upper()}...")
try:
model = M2M100ForConditionalGeneration.from_pretrained(model_path).to(DEVICE)
tokenizer = NllbTokenizer.from_pretrained(model_path)
logger.info("Model and tokenizer loaded successfully!")
except Exception as e:
logger.error(f"Error loading model: {e}")
# In a real app, you might want to exit or handle this more gracefully
raise
def translate_text(text: str, src_lang: str) -> str:
"""
Translates a single string of text to English.
"""
if src_lang not in SUPPORTED_LANGUAGES:
raise ValueError(f"Language '{src_lang}' not supported.")
tokenizer.src_lang = SUPPORTED_LANGUAGES[src_lang]
inputs = tokenizer(text, return_tensors="pt").to(DEVICE)
generated_tokens = model.generate(
**inputs,
forced_bos_token_id=tokenizer.convert_tokens_to_ids("eng_Latn"),
max_length=128,
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
def batch_translate_text(texts: List[str], src_lang: str) -> List[str]:
"""
Translates a batch of texts to English.
"""
if src_lang not in SUPPORTED_LANGUAGES:
raise ValueError(f"Language '{src_lang}' not supported.")
tokenizer.src_lang = SUPPORTED_LANGUAGES[src_lang]
# We use padding=True to handle batches of different lengths
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=512).to(DEVICE)
generated_tokens = model.generate(
**inputs,
forced_bos_token_id=tokenizer.convert_tokens_to_ids("eng_Latn"),
max_length=512, # Allow for longer generated sequences in batches
)
return tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
# --- 5. API Events ---
@app.on_event("startup")
async def startup_event():
"""Load the model at startup."""
load_model_and_tokenizer(MODEL_PATH)
# --- 6. API Endpoints ---
@app.get("/")
async def root():
"""Returns the frontend."""
return FileResponse('frontend/index.html')
@app.get("/languages")
def get_supported_languages():
"""Returns a list of supported languages."""
return {"supported_languages": list(SUPPORTED_LANGUAGES.keys())}
@app.post("/translate", response_model=TranslationResponse)
async def translate(request: TranslationRequest):
"""Translates a single text from a source language to English."""
try:
translated_text = translate_text(request.text, request.source_language)
return TranslationResponse(
original_text=request.text,
translated_text=translated_text,
source_language=request.source_language,
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")
@app.post("/batch-translate", response_model=BatchTranslationResponse)
async def batch_translate(request: BatchTranslationRequest):
"""Translates a batch of texts from a source language to English."""
try:
translated_texts = batch_translate_text(request.texts, request.source_language)
return BatchTranslationResponse(
original_texts=request.texts,
translated_texts=translated_texts,
source_language=request.source_language,
)
except ValueError as e:
raise HTTPException(status_code=400, detail=str(e))
except Exception as e:
raise HTTPException(status_code=500, detail=f"An unexpected error occurred: {e}")
@app.post("/translate-pdf", response_model=PdfTranslationResponse)
async def translate_pdf(source_language: str, file: UploadFile = File(...)):
"""Translates a PDF file from a source language to English."""
if file.content_type != "application/pdf":
raise HTTPException(status_code=400, detail="Invalid file type. Please upload a PDF.")
# Save the uploaded file temporarily
temp_pdf_path = f"temp_{file.filename}"
with open(temp_pdf_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
try:
# Extract text from the PDF
doc = fitz.open(temp_pdf_path)
extracted_text = ""
for page in doc:
extracted_text += page.get_text()
doc.close()
if not extracted_text.strip():
raise HTTPException(status_code=400, detail="Could not extract any text from the PDF.")
# Split text into chunks (e.g., by paragraph) to handle large texts
text_chunks = [p.strip() for p in extracted_text.split('\n') if p.strip()]
# Translate the chunks in batches
translated_chunks = batch_translate_text(text_chunks, source_language)
# Join the translated chunks back together
final_translation = "\n".join(translated_chunks)
return PdfTranslationResponse(
filename=file.filename,
translated_text=final_translation,
source_language=source_language,
)
except Exception as e:
logger.error(f"Error processing PDF: {e}")
raise HTTPException(status_code=500, detail=f"An error occurred while processing the PDF: {e}")
finally:
# Clean up the temporary file
if os.path.exists(temp_pdf_path):
os.remove(temp_pdf_path)
# --- 7. Example Usage (for running with uvicorn) ---
# To run this API, use the following command in your terminal:
# uvicorn fast_api:app --reload
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|