from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_core.documents import Document import glob import json import os folder_path = "D:\Webchatbot\Dataset\Penjas\Clean" file_paths = glob.glob(os.path.join(folder_path, "*.txt")) pages = [] for path in file_paths: with open(path, "r", encoding="utf-8") as f: text = f.read() pages.append(Document(page_content=text, metadata={"source": path})) print(f" Total file terbaca: {len(file_paths)}") text_splitter = RecursiveCharacterTextSplitter( chunk_size=300, chunk_overlap=50, separators=["\n\n", "\n", ".", " "] ) documents = text_splitter.split_documents(pages) all_texts = [doc.page_content for doc in documents] output_dir = "D:\Webchatbot\Dataset\Penjas\Chunk" os.makedirs(output_dir, exist_ok=True) output_path = os.path.join(output_dir, "penjas_chunks.json") data_to_save = [ {"id": i + 1, "text": chunk} for i, chunk in enumerate(all_texts) ] with open(output_path, "w", encoding="utf-8") as f: json.dump(data_to_save, f, ensure_ascii=False, indent=2) print(f"Hasil chunk disimpan ke: {os.path.abspath(output_path)}") for i, chunk in enumerate(all_texts[:3]): print(f"\n--- Chunk {i+1} ---\n{chunk}")