import numpy as np import faiss import os embeddings_path = "D:\Webchatbot\Dataset\Penjas\Embedd\penjas_embeddings.npy" output_dir = "D:\Webchatbot\Rag-Pipeline\Vektor Database\Penjas" embeddings_np = np.load(embeddings_path) print(f"Embeddings shape: {embeddings_np.shape}") dimension = embeddings_np.shape[1] index = faiss.IndexFlatL2(dimension) index.add(embeddings_np) print(f"Total vectors di FAISS: {index.ntotal}") faiss_index_path = os.path.join(output_dir, "PENJAS_index.index") faiss.write_index(index, faiss_index_path) print(f"FAISS index disimpan ke: {faiss_index_path}")