Spaces:
Runtime error
Runtime error
| # ------------------------------------------------------------------------ | |
| # Copyright (c) 2021 megvii-model. All Rights Reserved. | |
| # ------------------------------------------------------------------------ | |
| # Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR) | |
| # Copyright (c) 2020 SenseTime. All Rights Reserved. | |
| # ------------------------------------------------------------------------ | |
| # Modified from DETR (https://github.com/facebookresearch/detr) | |
| # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved | |
| # ------------------------------------------------------------------------ | |
| """ | |
| DETR model and criterion classes. | |
| """ | |
| import copy | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| from torch import nn, Tensor | |
| from typing import List | |
| from util import box_ops | |
| from util.misc import (NestedTensor, nested_tensor_from_tensor_list, | |
| accuracy, get_world_size, interpolate, get_rank, | |
| is_dist_avail_and_initialized, inverse_sigmoid) | |
| from models.structures import Instances, Boxes, pairwise_iou, matched_boxlist_iou | |
| from .backbone import build_backbone | |
| from .matcher import build_matcher | |
| from .deformable_transformer_plus import build_deforamble_transformer | |
| from .qim import build as build_query_interaction_layer | |
| from .memory_bank import build_memory_bank | |
| from .deformable_detr import SetCriterion, MLP | |
| from .segmentation import sigmoid_focal_loss | |
| class ClipMatcher(SetCriterion): | |
| def __init__(self, num_classes, | |
| matcher, | |
| weight_dict, | |
| losses): | |
| """ Create the criterion. | |
| Parameters: | |
| num_classes: number of object categories, omitting the special no-object category | |
| matcher: module able to compute a matching between targets and proposals | |
| weight_dict: dict containing as key the names of the losses and as values their relative weight. | |
| eos_coef: relative classification weight applied to the no-object category | |
| losses: list of all the losses to be applied. See get_loss for list of available losses. | |
| """ | |
| super().__init__(num_classes, matcher, weight_dict, losses) | |
| self.num_classes = num_classes | |
| self.matcher = matcher | |
| self.weight_dict = weight_dict | |
| self.losses = losses | |
| self.focal_loss = True | |
| self.losses_dict = {} | |
| self._current_frame_idx = 0 | |
| def initialize_for_single_clip(self, gt_instances: List[Instances]): | |
| self.gt_instances = gt_instances | |
| self.num_samples = 0 | |
| self.sample_device = None | |
| self._current_frame_idx = 0 | |
| self.losses_dict = {} | |
| def _step(self): | |
| self._current_frame_idx += 1 | |
| def calc_loss_for_track_scores(self, track_instances: Instances): | |
| frame_id = self._current_frame_idx - 1 | |
| gt_instances = self.gt_instances[frame_id] | |
| outputs = { | |
| 'pred_logits': track_instances.track_scores[None], | |
| } | |
| device = track_instances.track_scores.device | |
| num_tracks = len(track_instances) | |
| src_idx = torch.arange(num_tracks, dtype=torch.long, device=device) | |
| tgt_idx = track_instances.matched_gt_idxes # -1 for FP tracks and disappeared tracks | |
| track_losses = self.get_loss('labels', | |
| outputs=outputs, | |
| gt_instances=[gt_instances], | |
| indices=[(src_idx, tgt_idx)], | |
| num_boxes=1) | |
| self.losses_dict.update( | |
| {'frame_{}_track_{}'.format(frame_id, key): value for key, value in | |
| track_losses.items()}) | |
| def get_num_boxes(self, num_samples): | |
| num_boxes = torch.as_tensor(num_samples, dtype=torch.float, device=self.sample_device) | |
| if is_dist_avail_and_initialized(): | |
| torch.distributed.all_reduce(num_boxes) | |
| num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() | |
| return num_boxes | |
| def get_loss(self, loss, outputs, gt_instances, indices, num_boxes, **kwargs): | |
| loss_map = { | |
| 'labels': self.loss_labels, | |
| 'cardinality': self.loss_cardinality, | |
| 'boxes': self.loss_boxes, | |
| } | |
| assert loss in loss_map, f'do you really want to compute {loss} loss?' | |
| return loss_map[loss](outputs, gt_instances, indices, num_boxes, **kwargs) | |
| def loss_boxes(self, outputs, gt_instances: List[Instances], indices: List[tuple], num_boxes): | |
| """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss | |
| targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] | |
| The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. | |
| """ | |
| # We ignore the regression loss of the track-disappear slots. | |
| #TODO: Make this filter process more elegant. | |
| filtered_idx = [] | |
| for src_per_img, tgt_per_img in indices: | |
| keep = tgt_per_img != -1 | |
| filtered_idx.append((src_per_img[keep], tgt_per_img[keep])) | |
| indices = filtered_idx | |
| idx = self._get_src_permutation_idx(indices) | |
| src_boxes = outputs['pred_boxes'][idx] | |
| target_boxes = torch.cat([gt_per_img.boxes[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) | |
| # for pad target, don't calculate regression loss, judged by whether obj_id=-1 | |
| target_obj_ids = torch.cat([gt_per_img.obj_ids[i] for gt_per_img, (_, i) in zip(gt_instances, indices)], dim=0) # size(16) | |
| mask = (target_obj_ids != -1) | |
| loss_bbox = F.l1_loss(src_boxes[mask], target_boxes[mask], reduction='none') | |
| loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( | |
| box_ops.box_cxcywh_to_xyxy(src_boxes[mask]), | |
| box_ops.box_cxcywh_to_xyxy(target_boxes[mask]))) | |
| losses = {} | |
| losses['loss_bbox'] = loss_bbox.sum() / num_boxes | |
| losses['loss_giou'] = loss_giou.sum() / num_boxes | |
| return losses | |
| def loss_labels(self, outputs, gt_instances: List[Instances], indices, num_boxes, log=False): | |
| """Classification loss (NLL) | |
| targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] | |
| """ | |
| src_logits = outputs['pred_logits'] | |
| idx = self._get_src_permutation_idx(indices) | |
| target_classes = torch.full(src_logits.shape[:2], self.num_classes, | |
| dtype=torch.int64, device=src_logits.device) | |
| # The matched gt for disappear track query is set -1. | |
| labels = [] | |
| for gt_per_img, (_, J) in zip(gt_instances, indices): | |
| labels_per_img = torch.ones_like(J) | |
| # set labels of track-appear slots to 0. | |
| if len(gt_per_img) > 0: | |
| labels_per_img[J != -1] = gt_per_img.labels[J[J != -1]] | |
| labels.append(labels_per_img) | |
| target_classes_o = torch.cat(labels) | |
| target_classes[idx] = target_classes_o | |
| if self.focal_loss: | |
| gt_labels_target = F.one_hot(target_classes, num_classes=self.num_classes + 1)[:, :, :-1] # no loss for the last (background) class | |
| gt_labels_target = gt_labels_target.to(src_logits) | |
| loss_ce = sigmoid_focal_loss(src_logits.flatten(1), | |
| gt_labels_target.flatten(1), | |
| alpha=0.25, | |
| gamma=2, | |
| num_boxes=num_boxes, mean_in_dim1=False) | |
| loss_ce = loss_ce.sum() | |
| else: | |
| loss_ce = F.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) | |
| losses = {'loss_ce': loss_ce} | |
| if log: | |
| # TODO this should probably be a separate loss, not hacked in this one here | |
| losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] | |
| return losses | |
| def match_for_single_frame(self, outputs: dict): | |
| outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs'} | |
| gt_instances_i = self.gt_instances[self._current_frame_idx] # gt instances of i-th image. | |
| track_instances: Instances = outputs_without_aux['track_instances'] | |
| pred_logits_i = track_instances.pred_logits # predicted logits of i-th image. | |
| pred_boxes_i = track_instances.pred_boxes # predicted boxes of i-th image. | |
| obj_idxes = gt_instances_i.obj_ids | |
| obj_idxes_list = obj_idxes.detach().cpu().numpy().tolist() | |
| obj_idx_to_gt_idx = {obj_idx: gt_idx for gt_idx, obj_idx in enumerate(obj_idxes_list)} | |
| outputs_i = { | |
| 'pred_logits': pred_logits_i.unsqueeze(0), | |
| 'pred_boxes': pred_boxes_i.unsqueeze(0), | |
| } | |
| # step1. inherit and update the previous tracks. | |
| num_disappear_track = 0 | |
| for j in range(len(track_instances)): | |
| obj_id = track_instances.obj_idxes[j].item() | |
| # set new target idx. | |
| if obj_id >= 0: | |
| if obj_id in obj_idx_to_gt_idx: | |
| track_instances.matched_gt_idxes[j] = obj_idx_to_gt_idx[obj_id] | |
| else: | |
| num_disappear_track += 1 | |
| track_instances.matched_gt_idxes[j] = -1 # track-disappear case. | |
| else: | |
| track_instances.matched_gt_idxes[j] = -1 | |
| full_track_idxes = torch.arange(len(track_instances), dtype=torch.long).to(pred_logits_i.device) | |
| matched_track_idxes = (track_instances.obj_idxes >= 0) # occu | |
| prev_matched_indices = torch.stack( | |
| [full_track_idxes[matched_track_idxes], track_instances.matched_gt_idxes[matched_track_idxes]], dim=1).to( | |
| pred_logits_i.device) | |
| # step2. select the unmatched slots. | |
| # note that the FP tracks whose obj_idxes are -2 will not be selected here. | |
| unmatched_track_idxes = full_track_idxes[track_instances.obj_idxes == -1] | |
| # step3. select the untracked gt instances (new tracks). | |
| tgt_indexes = track_instances.matched_gt_idxes | |
| tgt_indexes = tgt_indexes[tgt_indexes != -1] | |
| tgt_state = torch.zeros(len(gt_instances_i)).to(pred_logits_i.device) | |
| tgt_state[tgt_indexes] = 1 | |
| untracked_tgt_indexes = torch.arange(len(gt_instances_i)).to(pred_logits_i.device)[tgt_state == 0] | |
| # untracked_tgt_indexes = select_unmatched_indexes(tgt_indexes, len(gt_instances_i)) | |
| untracked_gt_instances = gt_instances_i[untracked_tgt_indexes] | |
| def match_for_single_decoder_layer(unmatched_outputs, matcher): | |
| new_track_indices = matcher(unmatched_outputs, | |
| [untracked_gt_instances]) # list[tuple(src_idx, tgt_idx)] | |
| src_idx = new_track_indices[0][0] | |
| tgt_idx = new_track_indices[0][1] | |
| # concat src and tgt. | |
| new_matched_indices = torch.stack([unmatched_track_idxes[src_idx], untracked_tgt_indexes[tgt_idx]], | |
| dim=1).to(pred_logits_i.device) | |
| return new_matched_indices | |
| # step4. do matching between the unmatched slots and GTs. | |
| unmatched_outputs = { | |
| 'pred_logits': track_instances.pred_logits[unmatched_track_idxes].unsqueeze(0), | |
| 'pred_boxes': track_instances.pred_boxes[unmatched_track_idxes].unsqueeze(0), | |
| } | |
| new_matched_indices = match_for_single_decoder_layer(unmatched_outputs, self.matcher) | |
| # step5. update obj_idxes according to the new matching result. | |
| track_instances.obj_idxes[new_matched_indices[:, 0]] = gt_instances_i.obj_ids[new_matched_indices[:, 1]].long() | |
| track_instances.matched_gt_idxes[new_matched_indices[:, 0]] = new_matched_indices[:, 1] | |
| # step6. calculate iou. | |
| active_idxes = (track_instances.obj_idxes >= 0) & (track_instances.matched_gt_idxes >= 0) | |
| active_track_boxes = track_instances.pred_boxes[active_idxes] | |
| if len(active_track_boxes) > 0: | |
| gt_boxes = gt_instances_i.boxes[track_instances.matched_gt_idxes[active_idxes]] | |
| active_track_boxes = box_ops.box_cxcywh_to_xyxy(active_track_boxes) | |
| gt_boxes = box_ops.box_cxcywh_to_xyxy(gt_boxes) | |
| track_instances.iou[active_idxes] = matched_boxlist_iou(Boxes(active_track_boxes), Boxes(gt_boxes)) | |
| # step7. merge the unmatched pairs and the matched pairs. | |
| matched_indices = torch.cat([new_matched_indices, prev_matched_indices], dim=0) | |
| # step8. calculate losses. | |
| self.num_samples += len(gt_instances_i) + num_disappear_track | |
| self.sample_device = pred_logits_i.device | |
| for loss in self.losses: | |
| new_track_loss = self.get_loss(loss, | |
| outputs=outputs_i, | |
| gt_instances=[gt_instances_i], | |
| indices=[(matched_indices[:, 0], matched_indices[:, 1])], | |
| num_boxes=1) | |
| self.losses_dict.update( | |
| {'frame_{}_{}'.format(self._current_frame_idx, key): value for key, value in new_track_loss.items()}) | |
| if 'aux_outputs' in outputs: | |
| for i, aux_outputs in enumerate(outputs['aux_outputs']): | |
| unmatched_outputs_layer = { | |
| 'pred_logits': aux_outputs['pred_logits'][0, unmatched_track_idxes].unsqueeze(0), | |
| 'pred_boxes': aux_outputs['pred_boxes'][0, unmatched_track_idxes].unsqueeze(0), | |
| } | |
| new_matched_indices_layer = match_for_single_decoder_layer(unmatched_outputs_layer, self.matcher) | |
| matched_indices_layer = torch.cat([new_matched_indices_layer, prev_matched_indices], dim=0) | |
| for loss in self.losses: | |
| if loss == 'masks': | |
| # Intermediate masks losses are too costly to compute, we ignore them. | |
| continue | |
| l_dict = self.get_loss(loss, | |
| aux_outputs, | |
| gt_instances=[gt_instances_i], | |
| indices=[(matched_indices_layer[:, 0], matched_indices_layer[:, 1])], | |
| num_boxes=1, ) | |
| self.losses_dict.update( | |
| {'frame_{}_aux{}_{}'.format(self._current_frame_idx, i, key): value for key, value in | |
| l_dict.items()}) | |
| self._step() | |
| return track_instances | |
| def forward(self, outputs, input_data: dict): | |
| # losses of each frame are calculated during the model's forwarding and are outputted by the model as outputs['losses_dict]. | |
| losses = outputs.pop("losses_dict") | |
| num_samples = self.get_num_boxes(self.num_samples) | |
| for loss_name, loss in losses.items(): | |
| losses[loss_name] /= num_samples | |
| return losses | |
| class RuntimeTrackerBase(object): | |
| def __init__(self, score_thresh=0.8, filter_score_thresh=0.6, miss_tolerance=5): | |
| self.score_thresh = score_thresh | |
| self.filter_score_thresh = filter_score_thresh | |
| self.miss_tolerance = miss_tolerance | |
| self.max_obj_id = 0 | |
| def clear(self): | |
| self.max_obj_id = 0 | |
| def update(self, track_instances: Instances): | |
| track_instances.disappear_time[track_instances.scores >= self.score_thresh] = 0 | |
| for i in range(len(track_instances)): | |
| if track_instances.obj_idxes[i] == -1 and track_instances.scores[i] >= self.score_thresh: | |
| # print("track {} has score {}, assign obj_id {}".format(i, track_instances.scores[i], self.max_obj_id)) | |
| track_instances.obj_idxes[i] = self.max_obj_id | |
| self.max_obj_id += 1 | |
| elif track_instances.obj_idxes[i] >= 0 and track_instances.scores[i] < self.filter_score_thresh: | |
| track_instances.disappear_time[i] += 1 | |
| if track_instances.disappear_time[i] >= self.miss_tolerance: | |
| # Set the obj_id to -1. | |
| # Then this track will be removed by TrackEmbeddingLayer. | |
| track_instances.obj_idxes[i] = -1 | |
| class TrackerPostProcess(nn.Module): | |
| """ This module converts the model's output into the format expected by the coco api""" | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, track_instances: Instances, target_size) -> Instances: | |
| """ Perform the computation | |
| Parameters: | |
| outputs: raw outputs of the model | |
| target_sizes: tensor of dimension [batch_size x 2] containing the size of each images of the batch | |
| For evaluation, this must be the original image size (before any data augmentation) | |
| For visualization, this should be the image size after data augment, but before padding | |
| """ | |
| out_logits = track_instances.pred_logits | |
| out_bbox = track_instances.pred_boxes | |
| prob = out_logits.sigmoid() | |
| # prob = out_logits[...,:1].sigmoid() | |
| scores, labels = prob.max(-1) | |
| # convert to [x0, y0, x1, y1] format | |
| boxes = box_ops.box_cxcywh_to_xyxy(out_bbox) | |
| # and from relative [0, 1] to absolute [0, height] coordinates | |
| img_h, img_w = target_size | |
| scale_fct = torch.Tensor([img_w, img_h, img_w, img_h]).to(boxes) | |
| boxes = boxes * scale_fct[None, :] | |
| track_instances.boxes = boxes | |
| track_instances.scores = scores | |
| track_instances.labels = labels | |
| # track_instances.remove('pred_logits') | |
| # track_instances.remove('pred_boxes') | |
| return track_instances | |
| def _get_clones(module, N): | |
| return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
| class MOTR(nn.Module): | |
| def __init__(self, backbone, transformer, num_classes, num_queries, num_feature_levels, criterion, track_embed, | |
| aux_loss=True, with_box_refine=False, two_stage=False, memory_bank=None): | |
| """ Initializes the model. | |
| Parameters: | |
| backbone: torch module of the backbone to be used. See backbone.py | |
| transformer: torch module of the transformer architecture. See transformer.py | |
| num_classes: number of object classes | |
| num_queries: number of object queries, ie detection slot. This is the maximal number of objects | |
| DETR can detect in a single image. For COCO, we recommend 100 queries. | |
| aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used. | |
| with_box_refine: iterative bounding box refinement | |
| two_stage: two-stage Deformable DETR | |
| """ | |
| super().__init__() | |
| self.num_queries = num_queries | |
| self.track_embed = track_embed | |
| self.transformer = transformer | |
| hidden_dim = transformer.d_model | |
| self.num_classes = num_classes | |
| self.class_embed = nn.Linear(hidden_dim, num_classes) | |
| self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3) | |
| self.num_feature_levels = num_feature_levels | |
| if not two_stage: | |
| self.query_embed = nn.Embedding(num_queries, hidden_dim * 2) | |
| if num_feature_levels > 1: | |
| num_backbone_outs = len(backbone.strides) | |
| input_proj_list = [] | |
| for _ in range(num_backbone_outs): | |
| in_channels = backbone.num_channels[_] | |
| input_proj_list.append(nn.Sequential( | |
| nn.Conv2d(in_channels, hidden_dim, kernel_size=1), | |
| nn.GroupNorm(32, hidden_dim), | |
| )) | |
| for _ in range(num_feature_levels - num_backbone_outs): | |
| input_proj_list.append(nn.Sequential( | |
| nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1), | |
| nn.GroupNorm(32, hidden_dim), | |
| )) | |
| in_channels = hidden_dim | |
| self.input_proj = nn.ModuleList(input_proj_list) | |
| else: | |
| self.input_proj = nn.ModuleList([ | |
| nn.Sequential( | |
| nn.Conv2d(backbone.num_channels[0], hidden_dim, kernel_size=1), | |
| nn.GroupNorm(32, hidden_dim), | |
| )]) | |
| self.backbone = backbone | |
| self.aux_loss = aux_loss | |
| self.with_box_refine = with_box_refine | |
| self.two_stage = two_stage | |
| prior_prob = 0.01 | |
| bias_value = -math.log((1 - prior_prob) / prior_prob) | |
| self.class_embed.bias.data = torch.ones(num_classes) * bias_value | |
| nn.init.constant_(self.bbox_embed.layers[-1].weight.data, 0) | |
| nn.init.constant_(self.bbox_embed.layers[-1].bias.data, 0) | |
| for proj in self.input_proj: | |
| nn.init.xavier_uniform_(proj[0].weight, gain=1) | |
| nn.init.constant_(proj[0].bias, 0) | |
| # if two-stage, the last class_embed and bbox_embed is for region proposal generation | |
| num_pred = (transformer.decoder.num_layers + 1) if two_stage else transformer.decoder.num_layers | |
| if with_box_refine: | |
| self.class_embed = _get_clones(self.class_embed, num_pred) | |
| self.bbox_embed = _get_clones(self.bbox_embed, num_pred) | |
| nn.init.constant_(self.bbox_embed[0].layers[-1].bias.data[2:], -2.0) | |
| # hack implementation for iterative bounding box refinement | |
| self.transformer.decoder.bbox_embed = self.bbox_embed | |
| else: | |
| nn.init.constant_(self.bbox_embed.layers[-1].bias.data[2:], -2.0) | |
| self.class_embed = nn.ModuleList([self.class_embed for _ in range(num_pred)]) | |
| self.bbox_embed = nn.ModuleList([self.bbox_embed for _ in range(num_pred)]) | |
| self.transformer.decoder.bbox_embed = None | |
| if two_stage: | |
| # hack implementation for two-stage | |
| self.transformer.decoder.class_embed = self.class_embed | |
| for box_embed in self.bbox_embed: | |
| nn.init.constant_(box_embed.layers[-1].bias.data[2:], 0.0) | |
| self.post_process = TrackerPostProcess() | |
| self.track_base = RuntimeTrackerBase() | |
| self.criterion = criterion | |
| self.memory_bank = memory_bank | |
| self.mem_bank_len = 0 if memory_bank is None else memory_bank.max_his_length | |
| def _generate_empty_tracks(self): | |
| track_instances = Instances((1, 1)) | |
| num_queries, dim = self.query_embed.weight.shape # (300, 512) | |
| device = self.query_embed.weight.device | |
| track_instances.ref_pts = self.transformer.reference_points(self.query_embed.weight[:, :dim // 2]) | |
| track_instances.query_pos = self.query_embed.weight | |
| track_instances.output_embedding = torch.zeros((num_queries, dim >> 1), device=device) | |
| track_instances.obj_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device) | |
| track_instances.matched_gt_idxes = torch.full((len(track_instances),), -1, dtype=torch.long, device=device) | |
| track_instances.disappear_time = torch.zeros((len(track_instances), ), dtype=torch.long, device=device) | |
| track_instances.iou = torch.zeros((len(track_instances),), dtype=torch.float, device=device) | |
| track_instances.scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device) | |
| track_instances.track_scores = torch.zeros((len(track_instances),), dtype=torch.float, device=device) | |
| track_instances.pred_boxes = torch.zeros((len(track_instances), 4), dtype=torch.float, device=device) | |
| track_instances.pred_logits = torch.zeros((len(track_instances), self.num_classes), dtype=torch.float, device=device) | |
| mem_bank_len = self.mem_bank_len | |
| track_instances.mem_bank = torch.zeros((len(track_instances), mem_bank_len, dim // 2), dtype=torch.float32, device=device) | |
| track_instances.mem_padding_mask = torch.ones((len(track_instances), mem_bank_len), dtype=torch.bool, device=device) | |
| track_instances.save_period = torch.zeros((len(track_instances), ), dtype=torch.float32, device=device) | |
| return track_instances.to(self.query_embed.weight.device) | |
| def clear(self): | |
| self.track_base.clear() | |
| def _set_aux_loss(self, outputs_class, outputs_coord): | |
| # this is a workaround to make torchscript happy, as torchscript | |
| # doesn't support dictionary with non-homogeneous values, such | |
| # as a dict having both a Tensor and a list. | |
| return [{'pred_logits': a, 'pred_boxes': b, } | |
| for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] | |
| def _forward_single_image(self, samples, track_instances: Instances): | |
| features, pos = self.backbone(samples) | |
| src, mask = features[-1].decompose() | |
| assert mask is not None | |
| srcs = [] | |
| masks = [] | |
| for l, feat in enumerate(features): | |
| src, mask = feat.decompose() | |
| srcs.append(self.input_proj[l](src)) | |
| masks.append(mask) | |
| assert mask is not None | |
| if self.num_feature_levels > len(srcs): | |
| _len_srcs = len(srcs) | |
| for l in range(_len_srcs, self.num_feature_levels): | |
| if l == _len_srcs: | |
| src = self.input_proj[l](features[-1].tensors) | |
| else: | |
| src = self.input_proj[l](srcs[-1]) | |
| m = samples.mask | |
| mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0] | |
| pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype) | |
| srcs.append(src) | |
| masks.append(mask) | |
| pos.append(pos_l) | |
| hs, init_reference, inter_references, enc_outputs_class, enc_outputs_coord_unact = self.transformer(srcs, masks, pos, track_instances.query_pos, ref_pts=track_instances.ref_pts) | |
| outputs_classes = [] | |
| outputs_coords = [] | |
| for lvl in range(hs.shape[0]): | |
| if lvl == 0: | |
| reference = init_reference | |
| else: | |
| reference = inter_references[lvl - 1] | |
| reference = inverse_sigmoid(reference) | |
| outputs_class = self.class_embed[lvl](hs[lvl]) | |
| tmp = self.bbox_embed[lvl](hs[lvl]) | |
| if reference.shape[-1] == 4: | |
| tmp += reference | |
| else: | |
| assert reference.shape[-1] == 2 | |
| tmp[..., :2] += reference | |
| outputs_coord = tmp.sigmoid() | |
| outputs_classes.append(outputs_class) | |
| outputs_coords.append(outputs_coord) | |
| outputs_class = torch.stack(outputs_classes) | |
| outputs_coord = torch.stack(outputs_coords) | |
| ref_pts_all = torch.cat([init_reference[None], inter_references[:, :, :, :2]], dim=0) | |
| out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1], 'ref_pts': ref_pts_all[5]} | |
| if self.aux_loss: | |
| out['aux_outputs'] = self._set_aux_loss(outputs_class, outputs_coord) | |
| with torch.no_grad(): | |
| if self.training: | |
| track_scores = outputs_class[-1, 0, :].sigmoid().max(dim=-1).values | |
| else: | |
| track_scores = outputs_class[-1, 0, :, 0].sigmoid() | |
| track_instances.scores = track_scores | |
| track_instances.pred_logits = outputs_class[-1, 0] | |
| track_instances.pred_boxes = outputs_coord[-1, 0] | |
| track_instances.output_embedding = hs[-1, 0] | |
| if self.training: | |
| # the track id will be assigned by the mather. | |
| out['track_instances'] = track_instances | |
| track_instances = self.criterion.match_for_single_frame(out) | |
| else: | |
| # each track will be assigned an unique global id by the track base. | |
| self.track_base.update(track_instances) | |
| if self.memory_bank is not None: | |
| track_instances = self.memory_bank(track_instances) | |
| # track_instances.track_scores = track_instances.track_scores[..., 0] | |
| # track_instances.scores = track_instances.track_scores.sigmoid() | |
| if self.training: | |
| self.criterion.calc_loss_for_track_scores(track_instances) | |
| tmp = {} | |
| tmp['init_track_instances'] = self._generate_empty_tracks() | |
| tmp['track_instances'] = track_instances | |
| out_track_instances = self.track_embed(tmp) | |
| out['track_instances'] = out_track_instances | |
| return out | |
| def inference_single_image(self, img, ori_img_size, track_instances=None): | |
| if not isinstance(img, NestedTensor): | |
| img = nested_tensor_from_tensor_list(img) | |
| if track_instances is None: | |
| track_instances = self._generate_empty_tracks() | |
| res = self._forward_single_image(img, track_instances=track_instances) | |
| track_instances = res['track_instances'] | |
| track_instances = self.post_process(track_instances, ori_img_size) | |
| ret = {'track_instances': track_instances} | |
| if 'ref_pts' in res: | |
| ref_pts = res['ref_pts'] | |
| img_h, img_w = ori_img_size | |
| scale_fct = torch.Tensor([img_w, img_h]).to(ref_pts) | |
| ref_pts = ref_pts * scale_fct[None] | |
| ret['ref_pts'] = ref_pts | |
| return ret | |
| def forward(self, data: dict): | |
| if self.training: | |
| self.criterion.initialize_for_single_clip(data['gt_instances']) | |
| frames = data['imgs'] # list of Tensor. | |
| outputs = { | |
| 'pred_logits': [], | |
| 'pred_boxes': [], | |
| } | |
| track_instances = self._generate_empty_tracks() | |
| for frame in frames: | |
| if not isinstance(frame, NestedTensor): | |
| frame = nested_tensor_from_tensor_list([frame]) | |
| frame_res = self._forward_single_image(frame, track_instances) | |
| track_instances = frame_res['track_instances'] | |
| outputs['pred_logits'].append(frame_res['pred_logits']) | |
| outputs['pred_boxes'].append(frame_res['pred_boxes']) | |
| if not self.training: | |
| outputs['track_instances'] = track_instances | |
| else: | |
| outputs['losses_dict'] = self.criterion.losses_dict | |
| return outputs | |
| def build(args): | |
| dataset_to_num_classes = { | |
| 'coco': 91, | |
| 'coco_panoptic': 250, | |
| 'e2e_mot': 1, | |
| 'e2e_joint': 1, | |
| 'e2e_static_mot': 1 | |
| } | |
| assert args.dataset_file in dataset_to_num_classes | |
| num_classes = dataset_to_num_classes[args.dataset_file] | |
| device = torch.device(args.device) | |
| backbone = build_backbone(args) | |
| transformer = build_deforamble_transformer(args) | |
| d_model = transformer.d_model | |
| hidden_dim = args.dim_feedforward | |
| query_interaction_layer = build_query_interaction_layer(args, args.query_interaction_layer, d_model, hidden_dim, d_model*2) | |
| img_matcher = build_matcher(args) | |
| num_frames_per_batch = max(args.sampler_lengths) | |
| weight_dict = {} | |
| for i in range(num_frames_per_batch): | |
| weight_dict.update({"frame_{}_loss_ce".format(i): args.cls_loss_coef, | |
| 'frame_{}_loss_bbox'.format(i): args.bbox_loss_coef, | |
| 'frame_{}_loss_giou'.format(i): args.giou_loss_coef, | |
| }) | |
| # TODO this is a hack | |
| if args.aux_loss: | |
| for i in range(num_frames_per_batch): | |
| for j in range(args.dec_layers - 1): | |
| weight_dict.update({"frame_{}_aux{}_loss_ce".format(i, j): args.cls_loss_coef, | |
| 'frame_{}_aux{}_loss_bbox'.format(i, j): args.bbox_loss_coef, | |
| 'frame_{}_aux{}_loss_giou'.format(i, j): args.giou_loss_coef, | |
| }) | |
| if args.memory_bank_type is not None and len(args.memory_bank_type) > 0: | |
| memory_bank = build_memory_bank(args, d_model, hidden_dim, d_model * 2) | |
| for i in range(num_frames_per_batch): | |
| weight_dict.update({"frame_{}_track_loss_ce".format(i): args.cls_loss_coef}) | |
| else: | |
| memory_bank = None | |
| losses = ['labels', 'boxes'] | |
| criterion = ClipMatcher(num_classes, matcher=img_matcher, weight_dict=weight_dict, losses=losses) | |
| criterion.to(device) | |
| postprocessors = {} | |
| model = MOTR( | |
| backbone, | |
| transformer, | |
| track_embed=query_interaction_layer, | |
| num_feature_levels=args.num_feature_levels, | |
| num_classes=num_classes, | |
| num_queries=args.num_queries, | |
| aux_loss=args.aux_loss, | |
| criterion=criterion, | |
| with_box_refine=args.with_box_refine, | |
| two_stage=args.two_stage, | |
| memory_bank=memory_bank, | |
| ) | |
| return model, criterion, postprocessors | |