Spaces:
Runtime error
Runtime error
Ahsen Khaliq
commited on
Commit
·
80df0b9
1
Parent(s):
5b9f07d
Upload onnx_inference.py
Browse files- onnx_inference.py +160 -0
onnx_inference.py
ADDED
|
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
from loguru import logger
|
| 7 |
+
|
| 8 |
+
import onnxruntime
|
| 9 |
+
|
| 10 |
+
from yolox.data.data_augment import preproc as preprocess
|
| 11 |
+
from yolox.utils import mkdir, multiclass_nms, demo_postprocess, vis
|
| 12 |
+
from yolox.utils.visualize import plot_tracking
|
| 13 |
+
from yolox.tracker.byte_tracker import BYTETracker
|
| 14 |
+
from yolox.tracking_utils.timer import Timer
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def make_parser():
|
| 18 |
+
parser = argparse.ArgumentParser("onnxruntime inference sample")
|
| 19 |
+
parser.add_argument(
|
| 20 |
+
"-m",
|
| 21 |
+
"--model",
|
| 22 |
+
type=str,
|
| 23 |
+
default="bytetrack_s.onnx",
|
| 24 |
+
help="Input your onnx model.",
|
| 25 |
+
)
|
| 26 |
+
parser.add_argument(
|
| 27 |
+
"-i",
|
| 28 |
+
"--video_path",
|
| 29 |
+
type=str,
|
| 30 |
+
default='../../videos/palace.mp4',
|
| 31 |
+
help="Path to your input image.",
|
| 32 |
+
)
|
| 33 |
+
parser.add_argument(
|
| 34 |
+
"-o",
|
| 35 |
+
"--output_dir",
|
| 36 |
+
type=str,
|
| 37 |
+
default='demo_output',
|
| 38 |
+
help="Path to your output directory.",
|
| 39 |
+
)
|
| 40 |
+
parser.add_argument(
|
| 41 |
+
"-s",
|
| 42 |
+
"--score_thr",
|
| 43 |
+
type=float,
|
| 44 |
+
default=0.1,
|
| 45 |
+
help="Score threshould to filter the result.",
|
| 46 |
+
)
|
| 47 |
+
parser.add_argument(
|
| 48 |
+
"-n",
|
| 49 |
+
"--nms_thr",
|
| 50 |
+
type=float,
|
| 51 |
+
default=0.7,
|
| 52 |
+
help="NMS threshould.",
|
| 53 |
+
)
|
| 54 |
+
parser.add_argument(
|
| 55 |
+
"--input_shape",
|
| 56 |
+
type=str,
|
| 57 |
+
default="608,1088",
|
| 58 |
+
help="Specify an input shape for inference.",
|
| 59 |
+
)
|
| 60 |
+
parser.add_argument(
|
| 61 |
+
"--with_p6",
|
| 62 |
+
action="store_true",
|
| 63 |
+
help="Whether your model uses p6 in FPN/PAN.",
|
| 64 |
+
)
|
| 65 |
+
# tracking args
|
| 66 |
+
parser.add_argument("--track_thresh", type=float, default=0.5, help="tracking confidence threshold")
|
| 67 |
+
parser.add_argument("--track_buffer", type=int, default=30, help="the frames for keep lost tracks")
|
| 68 |
+
parser.add_argument("--match_thresh", type=int, default=0.8, help="matching threshold for tracking")
|
| 69 |
+
parser.add_argument('--min-box-area', type=float, default=10, help='filter out tiny boxes')
|
| 70 |
+
parser.add_argument("--mot20", dest="mot20", default=False, action="store_true", help="test mot20.")
|
| 71 |
+
return parser
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class Predictor(object):
|
| 75 |
+
def __init__(self, args):
|
| 76 |
+
self.rgb_means = (0.485, 0.456, 0.406)
|
| 77 |
+
self.std = (0.229, 0.224, 0.225)
|
| 78 |
+
self.args = args
|
| 79 |
+
self.session = onnxruntime.InferenceSession(args.model)
|
| 80 |
+
self.input_shape = tuple(map(int, args.input_shape.split(',')))
|
| 81 |
+
|
| 82 |
+
def inference(self, ori_img, timer):
|
| 83 |
+
img_info = {"id": 0}
|
| 84 |
+
height, width = ori_img.shape[:2]
|
| 85 |
+
img_info["height"] = height
|
| 86 |
+
img_info["width"] = width
|
| 87 |
+
img_info["raw_img"] = ori_img
|
| 88 |
+
|
| 89 |
+
img, ratio = preprocess(ori_img, self.input_shape, self.rgb_means, self.std)
|
| 90 |
+
img_info["ratio"] = ratio
|
| 91 |
+
ort_inputs = {self.session.get_inputs()[0].name: img[None, :, :, :]}
|
| 92 |
+
timer.tic()
|
| 93 |
+
output = self.session.run(None, ort_inputs)
|
| 94 |
+
predictions = demo_postprocess(output[0], self.input_shape, p6=self.args.with_p6)[0]
|
| 95 |
+
|
| 96 |
+
boxes = predictions[:, :4]
|
| 97 |
+
scores = predictions[:, 4:5] * predictions[:, 5:]
|
| 98 |
+
|
| 99 |
+
boxes_xyxy = np.ones_like(boxes)
|
| 100 |
+
boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2]/2.
|
| 101 |
+
boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3]/2.
|
| 102 |
+
boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2]/2.
|
| 103 |
+
boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3]/2.
|
| 104 |
+
boxes_xyxy /= ratio
|
| 105 |
+
dets = multiclass_nms(boxes_xyxy, scores, nms_thr=self.args.nms_thr, score_thr=self.args.score_thr)
|
| 106 |
+
return dets[:, :-1], img_info
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def imageflow_demo(predictor, args):
|
| 110 |
+
cap = cv2.VideoCapture(args.video_path)
|
| 111 |
+
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) # float
|
| 112 |
+
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) # float
|
| 113 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 114 |
+
save_folder = args.output_dir
|
| 115 |
+
os.makedirs(save_folder, exist_ok=True)
|
| 116 |
+
save_path = os.path.join(save_folder, args.video_path.split("/")[-1])
|
| 117 |
+
logger.info(f"video save_path is {save_path}")
|
| 118 |
+
vid_writer = cv2.VideoWriter(
|
| 119 |
+
save_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height))
|
| 120 |
+
)
|
| 121 |
+
tracker = BYTETracker(args, frame_rate=30)
|
| 122 |
+
timer = Timer()
|
| 123 |
+
frame_id = 0
|
| 124 |
+
results = []
|
| 125 |
+
while True:
|
| 126 |
+
if frame_id % 20 == 0:
|
| 127 |
+
logger.info('Processing frame {} ({:.2f} fps)'.format(frame_id, 1. / max(1e-5, timer.average_time)))
|
| 128 |
+
ret_val, frame = cap.read()
|
| 129 |
+
if ret_val:
|
| 130 |
+
outputs, img_info = predictor.inference(frame, timer)
|
| 131 |
+
online_targets = tracker.update(outputs, [img_info['height'], img_info['width']], [img_info['height'], img_info['width']])
|
| 132 |
+
online_tlwhs = []
|
| 133 |
+
online_ids = []
|
| 134 |
+
online_scores = []
|
| 135 |
+
for t in online_targets:
|
| 136 |
+
tlwh = t.tlwh
|
| 137 |
+
tid = t.track_id
|
| 138 |
+
vertical = tlwh[2] / tlwh[3] > 1.6
|
| 139 |
+
if tlwh[2] * tlwh[3] > args.min_box_area and not vertical:
|
| 140 |
+
online_tlwhs.append(tlwh)
|
| 141 |
+
online_ids.append(tid)
|
| 142 |
+
online_scores.append(t.score)
|
| 143 |
+
timer.toc()
|
| 144 |
+
results.append((frame_id + 1, online_tlwhs, online_ids, online_scores))
|
| 145 |
+
online_im = plot_tracking(img_info['raw_img'], online_tlwhs, online_ids, frame_id=frame_id + 1,
|
| 146 |
+
fps=1. / timer.average_time)
|
| 147 |
+
vid_writer.write(online_im)
|
| 148 |
+
ch = cv2.waitKey(1)
|
| 149 |
+
if ch == 27 or ch == ord("q") or ch == ord("Q"):
|
| 150 |
+
break
|
| 151 |
+
else:
|
| 152 |
+
break
|
| 153 |
+
frame_id += 1
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
if __name__ == '__main__':
|
| 157 |
+
args = make_parser().parse_args()
|
| 158 |
+
|
| 159 |
+
predictor = Predictor(args)
|
| 160 |
+
imageflow_demo(predictor, args)
|