Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -47,6 +47,34 @@ def convert_European_time(data, time_zone):
|
|
| 47 |
data.index = data.index.tz_localize(None)
|
| 48 |
return data
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
|
| 51 |
|
| 52 |
if github_token:
|
|
@@ -92,8 +120,26 @@ def conformal_predictions(data, target, my_forecast):
|
|
| 92 |
#data.reset_index(inplace=True)
|
| 93 |
return data
|
| 94 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
-
st.title("Transparency++")
|
| 97 |
|
| 98 |
countries = {
|
| 99 |
'Belgium': 'BE',
|
|
@@ -105,9 +151,15 @@ countries = {
|
|
| 105 |
|
| 106 |
st.sidebar.header('Filters')
|
| 107 |
|
|
|
|
|
|
|
|
|
|
| 108 |
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
|
| 109 |
|
| 110 |
|
|
|
|
|
|
|
|
|
|
| 111 |
st.write()
|
| 112 |
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:",
|
| 113 |
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
|
|
@@ -120,9 +172,12 @@ else:
|
|
| 120 |
st.error("Please select a valid date range.")
|
| 121 |
st.stop()
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
|
|
|
| 125 |
|
|
|
|
|
|
|
| 126 |
|
| 127 |
country_code = countries[selected_country]
|
| 128 |
if country_code == 'BE':
|
|
@@ -161,7 +216,7 @@ def add_feature(df2, df_main):
|
|
| 161 |
#df_combined.reset_index(inplace=True)
|
| 162 |
return df_combined
|
| 163 |
#data.index = data.index.tz_localize('UTC')
|
| 164 |
-
|
| 165 |
|
| 166 |
forecast_columns = [
|
| 167 |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
|
@@ -175,8 +230,7 @@ if section == 'Data':
|
|
| 175 |
|
| 176 |
st.header('Data Quality')
|
| 177 |
|
| 178 |
-
|
| 179 |
-
st.write(output_text)
|
| 180 |
|
| 181 |
# Report % of missing values
|
| 182 |
missing_values = data[forecast_columns].isna().mean() * 100
|
|
@@ -403,21 +457,225 @@ elif section == 'Forecasts':
|
|
| 403 |
)
|
| 404 |
)
|
| 405 |
return fig
|
|
|
|
| 406 |
|
| 407 |
-
|
| 408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
-
|
| 411 |
-
st.plotly_chart(solar_fig)
|
| 412 |
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
-
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
-
|
| 420 |
-
|
| 421 |
|
| 422 |
# Scatter plots for error distribution
|
| 423 |
st.subheader('Error Distribution')
|
|
@@ -426,18 +684,22 @@ elif section == 'Forecasts':
|
|
| 426 |
actual_col = forecast_columns[i]
|
| 427 |
forecast_col = forecast_columns[i + 1]
|
| 428 |
if forecast_col in data.columns:
|
| 429 |
-
obs =
|
| 430 |
-
pred =
|
| 431 |
error = pred - obs
|
| 432 |
|
| 433 |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
| 434 |
fig.update_layout(title=f'Error Distribution for {forecast_col}')
|
| 435 |
st.plotly_chart(fig)
|
| 436 |
|
| 437 |
-
|
| 438 |
|
| 439 |
st.subheader('Accuracy Metrics (Sorted by rMAE):')
|
| 440 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
if country_code == "BE":
|
| 442 |
|
| 443 |
# Combine the two DataFrames on their index
|
|
@@ -531,26 +793,32 @@ elif section == 'Forecasts':
|
|
| 531 |
|
| 532 |
# Convert the dictionaries to DataFrames and sort by rMAE
|
| 533 |
df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE')
|
|
|
|
| 534 |
df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE')
|
| 535 |
df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE')
|
| 536 |
df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE')
|
| 537 |
|
| 538 |
|
| 539 |
st.write("##### Wind Onshore:")
|
|
|
|
| 540 |
st.dataframe(df_wind_onshore)
|
| 541 |
|
| 542 |
st.write("##### Wind Offshore:")
|
|
|
|
| 543 |
st.dataframe(df_wind_offshore)
|
| 544 |
|
| 545 |
st.write("##### Load:")
|
|
|
|
| 546 |
st.dataframe(df_load)
|
| 547 |
|
| 548 |
st.write("##### Solar:")
|
|
|
|
| 549 |
st.dataframe(df_solar)
|
| 550 |
|
| 551 |
|
| 552 |
|
| 553 |
else:
|
|
|
|
| 554 |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
|
| 555 |
|
| 556 |
for i in range(0, len(forecast_columns), 2):
|
|
@@ -607,7 +875,7 @@ elif section == 'Forecasts':
|
|
| 607 |
|
| 608 |
|
| 609 |
st.subheader('ACF plots of Errors')
|
| 610 |
-
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three fields: Solar, Wind and Load.')
|
| 611 |
|
| 612 |
for i in range(0, len(forecast_columns), 2):
|
| 613 |
actual_col = forecast_columns[i]
|
|
@@ -634,7 +902,7 @@ elif section == 'Insights':
|
|
| 634 |
|
| 635 |
# Scatter plots for correlation between wind, solar, and load
|
| 636 |
st.subheader('Correlation between Wind, Solar, and Load')
|
| 637 |
-
st.write('The below scatter plots for correlation between all three fields: Solar, Wind and Load.')
|
| 638 |
|
| 639 |
combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]
|
| 640 |
|
|
@@ -659,12 +927,13 @@ elif section == 'Insights':
|
|
| 659 |
|
| 660 |
|
| 661 |
st.subheader('Weather vs. Generation/Demand')
|
| 662 |
-
st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and generation/demand.')
|
| 663 |
|
| 664 |
for weather_col in weather_columns:
|
| 665 |
for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
|
| 666 |
if weather_col in data.columns and actual_col in data.columns:
|
| 667 |
clean_label = actual_col.replace('_entsoe', '')
|
|
|
|
| 668 |
if weather_col == 'Temperature':
|
| 669 |
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
|
| 670 |
else:
|
|
|
|
| 47 |
data.index = data.index.tz_localize(None)
|
| 48 |
return data
|
| 49 |
|
| 50 |
+
def simplify_model_names(df):
|
| 51 |
+
# Define the mapping of complex names to simpler ones
|
| 52 |
+
replacements = {
|
| 53 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
|
| 54 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
|
| 55 |
+
r'\.Naive\.\dD': '.Naive',
|
| 56 |
+
}
|
| 57 |
+
|
| 58 |
+
# Apply the replacements
|
| 59 |
+
for original, simplified in replacements.items():
|
| 60 |
+
df.columns = df.columns.str.replace(original, simplified, regex=True)
|
| 61 |
+
|
| 62 |
+
return df
|
| 63 |
+
|
| 64 |
+
def simplify_model_names_in_index(df):
|
| 65 |
+
# Define the mapping of complex names to simpler ones
|
| 66 |
+
replacements = {
|
| 67 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp\.Forecast_elia': '.LightGBM_with_Forecast_elia',
|
| 68 |
+
r'\.LightGBMModel\.\dD\.TimeCov\.Temp': '.LightGBM',
|
| 69 |
+
r'\.Naive\.\dD': '.Naive',
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Apply the replacements to the DataFrame index
|
| 73 |
+
for original, simplified in replacements.items():
|
| 74 |
+
df.index = df.index.str.replace(original, simplified, regex=True)
|
| 75 |
+
|
| 76 |
+
return df
|
| 77 |
+
|
| 78 |
github_token = st.secrets["GitHub_Token_KUL_Margarida"]
|
| 79 |
|
| 80 |
if github_token:
|
|
|
|
| 120 |
#data.reset_index(inplace=True)
|
| 121 |
return data
|
| 122 |
|
| 123 |
+
# Main layout of the app
|
| 124 |
+
col1, col2 = st.columns([5, 2]) # Adjust the ratio to better fit your layout needs
|
| 125 |
+
with col1:
|
| 126 |
+
st.title("Transparency++")
|
| 127 |
+
|
| 128 |
+
with col2:
|
| 129 |
+
upper_space = col2.empty()
|
| 130 |
+
upper_space = col2.empty()
|
| 131 |
+
col2_1, col2_2 = st.columns(2) # Create two columns within the right column for side-by-side images
|
| 132 |
+
with col2_1:
|
| 133 |
+
st.image("KU_Leuven_logo.png", width=100) # Adjust the path and width as needed
|
| 134 |
+
with col2_2:
|
| 135 |
+
st.image("energyville_logo.png", width=100)
|
| 136 |
+
|
| 137 |
+
upper_space.markdown("""
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
""", unsafe_allow_html=True)
|
| 141 |
+
|
| 142 |
|
|
|
|
| 143 |
|
| 144 |
countries = {
|
| 145 |
'Belgium': 'BE',
|
|
|
|
| 151 |
|
| 152 |
st.sidebar.header('Filters')
|
| 153 |
|
| 154 |
+
st.sidebar.subheader("Select Country")
|
| 155 |
+
st.sidebar.caption("Choose the country for which you want to display data or forecasts.")
|
| 156 |
+
|
| 157 |
selected_country = st.sidebar.selectbox('Select Country', list(countries.keys()))
|
| 158 |
|
| 159 |
|
| 160 |
+
st.sidebar.subheader("Select Date Range ")
|
| 161 |
+
st.sidebar.caption("Define the time period over which the accuracy metrics will be calculated.")
|
| 162 |
+
|
| 163 |
st.write()
|
| 164 |
date_range = st.sidebar.date_input("Select Date Range for Metrics Calculation:",
|
| 165 |
value=(pd.to_datetime("2024-01-01"), pd.to_datetime(pd.Timestamp('today'))))
|
|
|
|
| 172 |
st.error("Please select a valid date range.")
|
| 173 |
st.stop()
|
| 174 |
|
| 175 |
+
st.sidebar.subheader("Section")
|
| 176 |
+
st.sidebar.caption("Select the type of information you want to explore.")
|
| 177 |
+
|
| 178 |
|
| 179 |
+
# Sidebar with radio buttons for different sections
|
| 180 |
+
section = st.sidebar.radio('', ['Data', 'Forecasts', 'Insights'],index=1)
|
| 181 |
|
| 182 |
country_code = countries[selected_country]
|
| 183 |
if country_code == 'BE':
|
|
|
|
| 216 |
#df_combined.reset_index(inplace=True)
|
| 217 |
return df_combined
|
| 218 |
#data.index = data.index.tz_localize('UTC')
|
| 219 |
+
|
| 220 |
|
| 221 |
forecast_columns = [
|
| 222 |
'Load_entsoe','Load_forecast_entsoe','Wind_onshore_entsoe','Wind_onshore_forecast_entsoe','Wind_offshore_entsoe','Wind_offshore_forecast_entsoe','Solar_entsoe','Solar_forecast_entsoe']
|
|
|
|
| 230 |
|
| 231 |
st.header('Data Quality')
|
| 232 |
|
| 233 |
+
st.write('The table below presents the data quality metrics for various energy-related datasets, focusing on the percentage of missing values and the occurrence of extreme or nonsensical values for the selected country.')
|
|
|
|
| 234 |
|
| 235 |
# Report % of missing values
|
| 236 |
missing_values = data[forecast_columns].isna().mean() * 100
|
|
|
|
| 457 |
)
|
| 458 |
)
|
| 459 |
return fig
|
| 460 |
+
|
| 461 |
|
| 462 |
+
def calculate_mae(y_true, y_pred):
|
| 463 |
+
return np.mean(np.abs(y_true - y_pred))
|
| 464 |
+
def plot_mae_comparison(df_dict, category_prefix, title, real_values_df):
|
| 465 |
+
hours = list(range(24))
|
| 466 |
+
if category_prefix=='Load':
|
| 467 |
+
model_colors = {
|
| 468 |
+
'LightGBMModel.7D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue
|
| 469 |
+
'LightGBMModel.7D.TimeCov.Temp': '#2CA02C', # Green
|
| 470 |
+
'Naive': '#FF7F0E' # Orange
|
| 471 |
+
}
|
| 472 |
+
else:
|
| 473 |
+
model_colors = {
|
| 474 |
+
'LightGBMModel.1D.TimeCov.Temp.Forecast_elia': '#1F77B4', # Blue
|
| 475 |
+
'LightGBMModel.1D.TimeCov.Temp': '#2CA02C', # Green
|
| 476 |
+
'Naive': '#FF7F0E' # Orange
|
| 477 |
+
}
|
| 478 |
+
fig = go.Figure()
|
| 479 |
+
for model_key, base_color in model_colors.items():
|
| 480 |
+
hours_with_data = []
|
| 481 |
+
mae_ratios = []
|
| 482 |
+
for hour in hours:
|
| 483 |
+
file_name = f'Predictions_{hour}h.csv'
|
| 484 |
+
df = df_dict.get(file_name, None)
|
| 485 |
+
if df is None:
|
| 486 |
+
continue
|
| 487 |
+
if isinstance(df.index, pd.DatetimeIndex):
|
| 488 |
+
first_day = df.index.min().normalize()
|
| 489 |
+
last_day = df.index.max().normalize()
|
| 490 |
+
df = df[df.index.normalize() != first_day]
|
| 491 |
+
df = df[df.index.normalize() != last_day]
|
| 492 |
+
# Adjusted filtering logic based on actual column names
|
| 493 |
+
filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
|
| 494 |
+
if not filtered_columns:
|
| 495 |
+
continue
|
| 496 |
+
# Assuming only one column matches, otherwise refine the selection logic
|
| 497 |
+
model_predictions = df[filtered_columns[0]]
|
| 498 |
+
actual_values = real_values_df[f'{category_prefix}_entsoe']
|
| 499 |
+
actual_values = actual_values.dropna()
|
| 500 |
+
# Align both series by their common indices
|
| 501 |
+
common_indices = model_predictions.index.intersection(actual_values.index)
|
| 502 |
+
aligned_model_predictions = model_predictions.loc[common_indices]
|
| 503 |
+
aligned_actual_values = actual_values.loc[common_indices]
|
| 504 |
+
# Calculate MAE for the model
|
| 505 |
+
model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
|
| 506 |
+
# Calculate MAE for the entsoe forecast
|
| 507 |
+
entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
|
| 508 |
+
#print(entsoe_forecast.index)
|
| 509 |
+
entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)
|
| 510 |
+
# Calculate MAE ratio
|
| 511 |
+
mae_ratio = model_mae / entsoe_mae
|
| 512 |
+
mae_ratios.append(mae_ratio)
|
| 513 |
+
hours_with_data.append(hour)
|
| 514 |
+
# Plot the MAE ratio for this model as points
|
| 515 |
+
if mae_ratios: # Only plot if there's data
|
| 516 |
+
fig.add_trace(go.Scatter(
|
| 517 |
+
x=hours_with_data, # The hours where we have data
|
| 518 |
+
y=mae_ratios,
|
| 519 |
+
mode='markers+lines', # Plot as points connected by lines
|
| 520 |
+
name=model_key,
|
| 521 |
+
line=dict(color=base_color),
|
| 522 |
+
marker=dict(color=base_color, size=8) # Customize marker size
|
| 523 |
+
))
|
| 524 |
+
# Update layout
|
| 525 |
+
fig.update_layout(
|
| 526 |
+
title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by hour of Forecasting.',
|
| 527 |
+
xaxis_title='Hour of Forecast',
|
| 528 |
+
yaxis_title='MAE Ratio (Model / entsoe)',
|
| 529 |
+
legend=dict(
|
| 530 |
+
orientation="h",
|
| 531 |
+
yanchor="bottom",
|
| 532 |
+
y=1.02,
|
| 533 |
+
xanchor="center",
|
| 534 |
+
x=0.5
|
| 535 |
+
)
|
| 536 |
+
)
|
| 537 |
+
return fig
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
def plot_mae_comparison_clock(df_dict, category_prefix, title, real_values_df):
|
| 542 |
+
hours = list(range(24))
|
| 543 |
+
if category_prefix=='Load':
|
| 544 |
+
model_colors = {
|
| 545 |
+
'LightGBM_with_Forecast_elia': '#1F77B4', # Blue
|
| 546 |
+
'LightGBM': '#2CA02C', # Green
|
| 547 |
+
'Naive': '#FF7F0E' # Orange
|
| 548 |
+
}
|
| 549 |
+
else:
|
| 550 |
+
model_colors = {
|
| 551 |
+
'LightGBM_with_Forecast_elia': '#1F77B4', # Blue
|
| 552 |
+
'LightGBM': '#2CA02C', # Green
|
| 553 |
+
'Naive': '#FF7F0E' # Orange
|
| 554 |
+
}
|
| 555 |
|
| 556 |
+
fig = go.Figure()
|
|
|
|
| 557 |
|
| 558 |
+
for model_key, base_color in model_colors.items():
|
| 559 |
+
hours_with_data = []
|
| 560 |
+
mae_ratios = []
|
| 561 |
+
|
| 562 |
+
#print(f"Processing {model_key}...") # Debugging print
|
| 563 |
+
|
| 564 |
+
for hour in hours:
|
| 565 |
+
file_name = f'Predictions_{hour}h.csv'
|
| 566 |
+
df = df_dict.get(file_name, None)
|
| 567 |
+
if df is None:
|
| 568 |
+
#print(f"No data for hour {hour}. Skipping...")
|
| 569 |
+
continue
|
| 570 |
+
|
| 571 |
+
if isinstance(df.index, pd.DatetimeIndex):
|
| 572 |
+
first_day = df.index.min().normalize()
|
| 573 |
+
last_day = df.index.max().normalize()
|
| 574 |
+
df = df[df.index.normalize() != first_day]
|
| 575 |
+
df = df[df.index.normalize() != last_day]
|
| 576 |
+
|
| 577 |
+
filtered_columns = [col for col in df.columns if col.startswith(f"{category_prefix}_entsoe") and model_key in col]
|
| 578 |
+
if not filtered_columns:
|
| 579 |
+
print(f"No matching columns for {model_key} at hour {hour}. Skipping...")
|
| 580 |
+
continue
|
| 581 |
+
|
| 582 |
+
model_predictions = df[filtered_columns[0]]
|
| 583 |
+
actual_values = real_values_df[f'{category_prefix}_entsoe']
|
| 584 |
+
actual_values = actual_values.dropna()
|
| 585 |
+
|
| 586 |
+
common_indices = model_predictions.index.intersection(actual_values.index)
|
| 587 |
+
aligned_model_predictions = model_predictions.loc[common_indices]
|
| 588 |
+
aligned_actual_values = actual_values.loc[common_indices]
|
| 589 |
+
|
| 590 |
+
model_mae = calculate_mae(aligned_actual_values, aligned_model_predictions)
|
| 591 |
+
entsoe_forecast = real_values_df[f'{category_prefix}_forecast_entsoe'].loc[common_indices]
|
| 592 |
+
entsoe_mae = calculate_mae(aligned_actual_values, entsoe_forecast)
|
| 593 |
+
|
| 594 |
+
mae_ratio = model_mae / entsoe_mae
|
| 595 |
+
mae_ratios.append(mae_ratio)
|
| 596 |
+
hours_with_data.append(hour)
|
| 597 |
+
|
| 598 |
+
if mae_ratios:
|
| 599 |
+
print(f"Adding {model_key} to the plot with {len(mae_ratios)} points.") # Debugging print
|
| 600 |
+
fig.add_trace(go.Scatterpolar(
|
| 601 |
+
r=mae_ratios + [mae_ratios[0]], # Ensure closure of the polar plot
|
| 602 |
+
theta=[h * 15 for h in hours_with_data] + [0], # Ensure closure at 0 degrees
|
| 603 |
+
mode='lines+markers',
|
| 604 |
+
name=model_key,
|
| 605 |
+
line=dict(color=base_color),
|
| 606 |
+
marker=dict(color=base_color, size=8)
|
| 607 |
+
))
|
| 608 |
+
else:
|
| 609 |
+
print(f"No data to plot for {model_key}.") # Debugging print
|
| 610 |
+
|
| 611 |
+
fig.update_layout(
|
| 612 |
+
polar=dict(
|
| 613 |
+
radialaxis=dict(visible=True, range=[0, max(max(mae_ratios), 1.0) * 1.1] if mae_ratios else [0, 1.0]),
|
| 614 |
+
angularaxis=dict(tickmode='array', tickvals=[h * 15 for h in hours], ticktext=hours)
|
| 615 |
+
),
|
| 616 |
+
title=f'{category_prefix}: rMAE<span style="font-size:11px;">ENTSO-E</span> by Hour of Forecasting',
|
| 617 |
+
showlegend=True
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
return fig
|
| 621 |
+
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
if country_code == "BE":
|
| 626 |
+
#-------------------------------------------------
|
| 627 |
+
#st.header('EDS Forecasts by Hour')
|
| 628 |
+
|
| 629 |
+
#solar_fig = plot_category(forecast_dict, 'Solar', 'Solar Predictions')
|
| 630 |
+
#st.plotly_chart(solar_fig)
|
| 631 |
+
|
| 632 |
+
#wind_offshore_fig = plot_category(forecast_dict, 'Wind_offshore', 'Wind Offshore Predictions')
|
| 633 |
+
#st.plotly_chart(wind_offshore_fig)
|
| 634 |
+
|
| 635 |
+
#wind_onshore_fig = plot_category(forecast_dict, 'Wind_onshore', 'Wind Onshore Predictions')
|
| 636 |
+
#st.plotly_chart(wind_onshore_fig)
|
| 637 |
+
|
| 638 |
+
#load_fig = plot_category(forecast_dict, 'Load', 'Load Predictions')
|
| 639 |
+
#st.plotly_chart(load_fig)
|
| 640 |
+
|
| 641 |
+
#-------------------------------------------------
|
| 642 |
+
#st.header('MAE Ratio Comparison by Forecast Hour')
|
| 643 |
+
#st.write("This graph shows the relative Mean Absolute Error (rMAE) of different forecasting models "
|
| 644 |
+
#"compared to the ENTSO-E forecast, by the hour at which the forecast was made. "
|
| 645 |
+
#"The rMAE is calculated as the ratio of the model's MAE to the ENTSO-E forecast's MAE.")
|
| 646 |
+
#mae_comparison_fig = plot_mae_comparison(forecast_dict, 'Solar', 'rMAE Ratio Comparison for Solar', real_values_df=Data_BE)
|
| 647 |
+
#st.plotly_chart(mae_comparison_fig)
|
| 648 |
+
# Similarly for Wind_onshore, Wind_offshore, and Load
|
| 649 |
+
#mae_comparison_fig_wind_onshore = plot_mae_comparison(forecast_dict, 'Wind_onshore', 'MAE Ratio Comparison for Wind Onshore', real_values_df=Data_BE)
|
| 650 |
+
#st.plotly_chart(mae_comparison_fig_wind_onshore)
|
| 651 |
+
#mae_comparison_fig_wind_offshore = plot_mae_comparison(forecast_dict, 'Wind_offshore', 'MAE Ratio Comparison for Wind Offshore', real_values_df=Data_BE)
|
| 652 |
+
#st.plotly_chart(mae_comparison_fig_wind_offshore)
|
| 653 |
+
#mae_comparison_fig_load = plot_mae_comparison(forecast_dict, 'Load', 'MAE Ratio Comparison for Load', real_values_df=Data_BE)
|
| 654 |
+
#st.plotly_chart(mae_comparison_fig_load)
|
| 655 |
+
#-------------------------------------------------
|
| 656 |
+
|
| 657 |
+
st.header('MAE Ratio Comparison by Forecast Hour')
|
| 658 |
+
st.write("These clock-plots shows the relative Mean Absolute Error (rMAE) of different forecasting models compared to the ENTSO-E forecast, by the hour at which the forecast was made. "
|
| 659 |
+
"The rMAE is calculated as the ratio of the model's MAE to the ENTSO-E forecast's MAE.")
|
| 660 |
+
|
| 661 |
+
forecast_dict2 = forecast_dict.copy()
|
| 662 |
+
forecast_dict2 = {k: simplify_model_names(v) for k, v in forecast_dict.items()}
|
| 663 |
|
| 664 |
+
|
| 665 |
+
mae_comparison_fig = plot_mae_comparison_clock(forecast_dict2, 'Solar', 'rMAE Ratio Comparison for Solar', real_values_df=Data_BE)
|
| 666 |
+
st.plotly_chart(mae_comparison_fig)
|
| 667 |
+
|
| 668 |
+
mae_comparison_fig_wind_onshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_onshore', 'MAE Ratio Comparison for Wind Onshore', real_values_df=Data_BE)
|
| 669 |
+
st.plotly_chart(mae_comparison_fig_wind_onshore)
|
| 670 |
+
|
| 671 |
+
mae_comparison_fig_wind_offshore = plot_mae_comparison_clock(forecast_dict2, 'Wind_offshore', 'MAE Ratio Comparison for Wind Offshore', real_values_df=Data_BE)
|
| 672 |
+
st.plotly_chart(mae_comparison_fig_wind_offshore)
|
| 673 |
+
|
| 674 |
+
mae_comparison_fig_load = plot_mae_comparison_clock(forecast_dict2, 'Load', 'MAE Ratio Comparison for Load', real_values_df=Data_BE)
|
| 675 |
+
st.plotly_chart(mae_comparison_fig_load)
|
| 676 |
|
| 677 |
+
|
| 678 |
+
|
| 679 |
|
| 680 |
# Scatter plots for error distribution
|
| 681 |
st.subheader('Error Distribution')
|
|
|
|
| 684 |
actual_col = forecast_columns[i]
|
| 685 |
forecast_col = forecast_columns[i + 1]
|
| 686 |
if forecast_col in data.columns:
|
| 687 |
+
obs = data[actual_col]
|
| 688 |
+
pred = data[forecast_col]
|
| 689 |
error = pred - obs
|
| 690 |
|
| 691 |
fig = px.scatter(x=obs, y=pred, labels={'x': 'Observed [MW]', 'y': 'Predicted by ENTSO-E [MW]'})
|
| 692 |
fig.update_layout(title=f'Error Distribution for {forecast_col}')
|
| 693 |
st.plotly_chart(fig)
|
| 694 |
|
| 695 |
+
|
| 696 |
|
| 697 |
st.subheader('Accuracy Metrics (Sorted by rMAE):')
|
| 698 |
|
| 699 |
+
output_text = f"The below metrics are calculated from the selected date range from {start_date.strftime('%Y-%m-%d')} to {end_date.strftime('%Y-%m-%d')}. This interval can be adjusted from the sidebar."
|
| 700 |
+
st.write(output_text)
|
| 701 |
+
|
| 702 |
+
|
| 703 |
if country_code == "BE":
|
| 704 |
|
| 705 |
# Combine the two DataFrames on their index
|
|
|
|
| 793 |
|
| 794 |
# Convert the dictionaries to DataFrames and sort by rMAE
|
| 795 |
df_wind_onshore = pd.DataFrame.from_dict(results_wind_onshore, orient='index').sort_values(by='rMAE')
|
| 796 |
+
print(df_wind_onshore)
|
| 797 |
df_wind_offshore = pd.DataFrame.from_dict(results_wind_offshore, orient='index').sort_values(by='rMAE')
|
| 798 |
df_load = pd.DataFrame.from_dict(results_load, orient='index').sort_values(by='rMAE')
|
| 799 |
df_solar = pd.DataFrame.from_dict(results_solar, orient='index').sort_values(by='rMAE')
|
| 800 |
|
| 801 |
|
| 802 |
st.write("##### Wind Onshore:")
|
| 803 |
+
df_wind_onshore = simplify_model_names_in_index(df_wind_onshore)
|
| 804 |
st.dataframe(df_wind_onshore)
|
| 805 |
|
| 806 |
st.write("##### Wind Offshore:")
|
| 807 |
+
df_wind_offshore2 = simplify_model_names_in_index(df_wind_offshore)
|
| 808 |
st.dataframe(df_wind_offshore)
|
| 809 |
|
| 810 |
st.write("##### Load:")
|
| 811 |
+
df_load = simplify_model_names_in_index(df_load)
|
| 812 |
st.dataframe(df_load)
|
| 813 |
|
| 814 |
st.write("##### Solar:")
|
| 815 |
+
df_solar = simplify_model_names_in_index(df_solar)
|
| 816 |
st.dataframe(df_solar)
|
| 817 |
|
| 818 |
|
| 819 |
|
| 820 |
else:
|
| 821 |
+
data = data.loc[start_date:end_date]
|
| 822 |
accuracy_metrics = pd.DataFrame(columns=['MAE', 'rMAE'], index=['Load', 'Solar', 'Wind Onshore', 'Wind Offshore'])
|
| 823 |
|
| 824 |
for i in range(0, len(forecast_columns), 2):
|
|
|
|
| 875 |
|
| 876 |
|
| 877 |
st.subheader('ACF plots of Errors')
|
| 878 |
+
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
|
| 879 |
|
| 880 |
for i in range(0, len(forecast_columns), 2):
|
| 881 |
actual_col = forecast_columns[i]
|
|
|
|
| 902 |
|
| 903 |
# Scatter plots for correlation between wind, solar, and load
|
| 904 |
st.subheader('Correlation between Wind, Solar, and Load')
|
| 905 |
+
st.write('The below scatter plots are made for checking whether there exists a correlation between all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
|
| 906 |
|
| 907 |
combinations = [('Solar_entsoe', 'Load_entsoe'), ('Wind_onshore_entsoe', 'Load_entsoe'), ('Wind_offshore_entsoe', 'Load_entsoe'), ('Solar_entsoe', 'Wind_onshore_entsoe'), ('Solar_entsoe', 'Wind_offshore_entsoe')]
|
| 908 |
|
|
|
|
| 927 |
|
| 928 |
|
| 929 |
st.subheader('Weather vs. Generation/Demand')
|
| 930 |
+
st.write('The below scatter plots show the relation between weather parameters (i.e., Temperature, Wind Speed) and the generation/demand data from ENTSO-E.')
|
| 931 |
|
| 932 |
for weather_col in weather_columns:
|
| 933 |
for actual_col in ['Load_entsoe', 'Solar_entsoe', 'Wind_onshore_entsoe', 'Wind_offshore_entsoe']:
|
| 934 |
if weather_col in data.columns and actual_col in data.columns:
|
| 935 |
clean_label = actual_col.replace('_entsoe', '')
|
| 936 |
+
|
| 937 |
if weather_col == 'Temperature':
|
| 938 |
fig = px.scatter(x=data[weather_col], y=data[actual_col], labels={'x': f'{weather_col} (°C)', 'y': f'{clean_label} Generation [MW]'}, color_discrete_sequence=['orange'])
|
| 939 |
else:
|