Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -289,40 +289,50 @@ elif section == 'Forecasts Quality':
|
|
| 289 |
|
| 290 |
# Time series for last 1 week
|
| 291 |
last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))]
|
| 292 |
-
st.write('The below
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
forecast_col = forecast_columns_line[i + 1]
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
st.plotly_chart(fig)
|
| 309 |
|
|
|
|
| 310 |
|
| 311 |
# Scatter plots for error distribution
|
| 312 |
st.subheader('Error Distribution')
|
| 313 |
st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
if forecast_col in data_2024.columns:
|
| 319 |
-
obs = data_2024[actual_col]
|
| 320 |
-
pred = data_2024[forecast_col]
|
| 321 |
-
error = pred - obs
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 326 |
|
| 327 |
|
| 328 |
|
|
@@ -358,50 +368,83 @@ elif section == 'Forecasts Quality':
|
|
| 358 |
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
|
| 359 |
accuracy_metrics = accuracy_metrics.round(4)
|
| 360 |
|
| 361 |
-
col1, col2 = st.columns([
|
| 362 |
|
| 363 |
with col1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
st.dataframe(accuracy_metrics)
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
st.markdown("""
|
| 368 |
<style>
|
| 369 |
-
.
|
| 370 |
-
|
| 371 |
-
font-weight: 500;
|
| 372 |
}
|
| 373 |
</style>
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
""", unsafe_allow_html=True)
|
| 378 |
|
| 379 |
-
|
| 380 |
-
$\text{MAE} = \frac{1}{n}\sum_{i=1}^{n}|y_i - \hat{y}_i|$
|
| 381 |
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
st.subheader('ACF plots of Errors')
|
| 389 |
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
|
| 390 |
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
|
| 404 |
-
|
|
|
|
| 405 |
|
| 406 |
# Section 3: Insights
|
| 407 |
elif section == 'Insights':
|
|
@@ -427,6 +470,20 @@ elif section == 'Insights':
|
|
| 427 |
st.pyplot(pairplot_fig)
|
| 428 |
|
| 429 |
elif selected_country == 'Overall':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
st.subheader("Net Load Error Map")
|
| 431 |
st.write("""
|
| 432 |
The net load error map highlights the error in the forecasted versus actual net load for each country.
|
|
@@ -440,7 +497,7 @@ elif selected_country == 'Overall':
|
|
| 440 |
filter_df = df[forecast_columns].dropna()
|
| 441 |
net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Wind_offshore_entsoe'] - filter_df['Solar_entsoe']
|
| 442 |
net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Wind_offshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe']
|
| 443 |
-
error = (
|
| 444 |
date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M") # Get the latest date in string format
|
| 445 |
return error, date
|
| 446 |
|
|
@@ -514,6 +571,7 @@ elif selected_country == 'Overall':
|
|
| 514 |
|
| 515 |
# Call the function to plot the map
|
| 516 |
plot_net_load_error_map(data_dict)
|
|
|
|
| 517 |
|
| 518 |
st.subheader("rMAE of Forecasts published on ENTSO-E TP")
|
| 519 |
st.write("""
|
|
|
|
| 289 |
|
| 290 |
# Time series for last 1 week
|
| 291 |
last_week = data.loc[data.index >= (data.index[-1] - pd.Timedelta(days=7))]
|
| 292 |
+
st.write('The below plot shows the time series of forecasts vs. observations provided by the ENTSO-E Transparency platform from the past week.')
|
| 293 |
+
|
| 294 |
+
# Options for selecting the data to display
|
| 295 |
+
variable_options = {
|
| 296 |
+
"Load": ("Load_entsoe", "Load_forecast_entsoe"),
|
| 297 |
+
"Solar": ("Solar_entsoe", "Solar_forecast_entsoe"),
|
| 298 |
+
"Wind Onshore": ("Wind_onshore_entsoe", "Wind_onshore_forecast_entsoe"),
|
| 299 |
+
"Wind Offshore": ("Wind_offshore_entsoe", "Wind_offshore_forecast_entsoe")
|
| 300 |
+
}
|
| 301 |
+
|
| 302 |
+
# Dropdown to select the variable
|
| 303 |
+
selected_variable = st.selectbox("Select Variable for Line PLot", list(variable_options.keys()))
|
| 304 |
|
| 305 |
+
# Get the corresponding columns for the selected variable
|
| 306 |
+
actual_col, forecast_col = variable_options[selected_variable]
|
|
|
|
| 307 |
|
| 308 |
+
# Plot only the selected variable's data
|
| 309 |
+
fig = go.Figure()
|
| 310 |
+
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[actual_col], mode='lines', name='Actual'))
|
| 311 |
+
fig.add_trace(go.Scatter(x=last_week.index, y=last_week[forecast_col], mode='lines', name='Forecast ENTSO-E'))
|
| 312 |
+
fig.update_layout(title=f'Forecasts vs Actual for {selected_variable}', xaxis_title='Date', yaxis_title='Value [MW]')
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
st.plotly_chart(fig)
|
| 315 |
|
| 316 |
# Scatter plots for error distribution
|
| 317 |
st.subheader('Error Distribution')
|
| 318 |
st.write('The below scatter plots show the error distribution of all three fields: Solar, Wind and Load between the selected date range')
|
| 319 |
+
selected_variable = st.selectbox("Select Variable for Error Distribution", list(variable_options.keys()))
|
| 320 |
+
|
| 321 |
+
# Get the corresponding columns for the selected variable
|
| 322 |
+
actual_col, forecast_col = variable_options[selected_variable]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
+
# Filter data for the selected year and check if columns are available
|
| 325 |
+
data_2024 = data[data.index.year > 2023]
|
| 326 |
+
if forecast_col in data_2024.columns:
|
| 327 |
+
obs = data_2024[actual_col]
|
| 328 |
+
pred = data_2024[forecast_col]
|
| 329 |
+
|
| 330 |
+
# Calculate error and plot
|
| 331 |
+
error = pred - obs
|
| 332 |
+
fig = px.scatter(x=obs, y=error, labels={'x': 'Observed [MW]', 'y': 'Error of Forecast ENTSO-E [MW]'})
|
| 333 |
+
fig.update_layout(title=f'Error Distribution for {selected_variable}')
|
| 334 |
+
|
| 335 |
+
st.plotly_chart(fig)
|
| 336 |
|
| 337 |
|
| 338 |
|
|
|
|
| 368 |
accuracy_metrics.sort_values(by=accuracy_metrics.columns[1], ascending=True, inplace=True)
|
| 369 |
accuracy_metrics = accuracy_metrics.round(4)
|
| 370 |
|
| 371 |
+
col1, col2 = st.columns([1, 2])
|
| 372 |
|
| 373 |
with col1:
|
| 374 |
+
st.markdown(
|
| 375 |
+
"""
|
| 376 |
+
<style>
|
| 377 |
+
.small-chart {
|
| 378 |
+
margin-top: 30px; /* Adjust this value as needed */
|
| 379 |
+
}
|
| 380 |
+
</style>
|
| 381 |
+
""",
|
| 382 |
+
unsafe_allow_html=True
|
| 383 |
+
)
|
| 384 |
st.dataframe(accuracy_metrics)
|
| 385 |
+
st.markdown(
|
| 386 |
+
"""
|
|
|
|
| 387 |
<style>
|
| 388 |
+
.small-chart {
|
| 389 |
+
margin-top: -30px; /* Adjust this value as needed */
|
|
|
|
| 390 |
}
|
| 391 |
</style>
|
| 392 |
+
""",
|
| 393 |
+
unsafe_allow_html=True
|
| 394 |
+
)
|
|
|
|
| 395 |
|
| 396 |
+
with col2:
|
|
|
|
| 397 |
|
| 398 |
+
# Prepare data for the radar chart
|
| 399 |
+
rmae_values = accuracy_metrics['rMAE'].tolist()
|
| 400 |
+
categories = accuracy_metrics.index.tolist()
|
| 401 |
+
|
| 402 |
+
fig = go.Figure()
|
| 403 |
+
fig.add_trace(go.Scatterpolar(
|
| 404 |
+
r=rmae_values,
|
| 405 |
+
theta=categories,
|
| 406 |
+
fill='toself',
|
| 407 |
+
name='rMAE'
|
| 408 |
+
))
|
| 409 |
+
|
| 410 |
+
# Configuring radar chart layout to be smaller
|
| 411 |
+
fig.update_layout(
|
| 412 |
+
width=250, # Adjust width
|
| 413 |
+
height=250, # Adjust height
|
| 414 |
+
margin=dict(t=20, b=20, l=0, r=0), # Remove all margins
|
| 415 |
+
polar=dict(
|
| 416 |
+
radialaxis=dict(
|
| 417 |
+
visible=True,
|
| 418 |
+
range=[0, max(rmae_values) * 1.2] # Adjust range dynamically
|
| 419 |
+
)),
|
| 420 |
+
showlegend=False
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
# Apply CSS class to remove extra space above chart
|
| 424 |
+
st.plotly_chart(fig, use_container_width=True, config={'displayModeBar': False}, className="small-chart")
|
| 425 |
|
| 426 |
st.subheader('ACF plots of Errors')
|
| 427 |
st.write('The below plots show the ACF (Auto-Correlation Function) for the errors of all three data fields obtained from ENTSO-E: Solar, Wind and Load.')
|
| 428 |
|
| 429 |
+
# Dropdown to select the variable
|
| 430 |
+
selected_variable = st.selectbox("Select Variable for ACF of Errors", list(variable_options.keys()))
|
| 431 |
+
|
| 432 |
+
# Get the corresponding columns for the selected variable
|
| 433 |
+
actual_col, forecast_col = variable_options[selected_variable]
|
| 434 |
+
|
| 435 |
+
# Calculate the error and plot ACF if columns are available
|
| 436 |
+
if forecast_col in data.columns:
|
| 437 |
+
obs = data[actual_col]
|
| 438 |
+
pred = data[forecast_col]
|
| 439 |
+
error = pred - obs
|
| 440 |
|
| 441 |
+
st.write(f"**ACF of Errors for {selected_variable}**")
|
| 442 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 443 |
+
plot_acf(error.dropna(), ax=ax)
|
| 444 |
+
st.pyplot(fig)
|
| 445 |
|
| 446 |
+
# Optionally calculate and store ACF values for further analysis if needed
|
| 447 |
+
acf_values = acf(error.dropna(), nlags=240)
|
| 448 |
|
| 449 |
# Section 3: Insights
|
| 450 |
elif section == 'Insights':
|
|
|
|
| 470 |
st.pyplot(pairplot_fig)
|
| 471 |
|
| 472 |
elif selected_country == 'Overall':
|
| 473 |
+
st.markdown(
|
| 474 |
+
"""
|
| 475 |
+
<style>
|
| 476 |
+
.main-container {
|
| 477 |
+
padding-top: 0px; /* Remove extra padding at the top */
|
| 478 |
+
}
|
| 479 |
+
.chart-spacing {
|
| 480 |
+
margin-top: -40px; /* Adjust this value to control spacing between map and radar plot */
|
| 481 |
+
}
|
| 482 |
+
</style>
|
| 483 |
+
""",
|
| 484 |
+
unsafe_allow_html=True
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
st.subheader("Net Load Error Map")
|
| 488 |
st.write("""
|
| 489 |
The net load error map highlights the error in the forecasted versus actual net load for each country.
|
|
|
|
| 497 |
filter_df = df[forecast_columns].dropna()
|
| 498 |
net_load = filter_df['Load_entsoe'] - filter_df['Wind_onshore_entsoe'] - filter_df['Wind_offshore_entsoe'] - filter_df['Solar_entsoe']
|
| 499 |
net_load_forecast = filter_df['Load_forecast_entsoe'] - filter_df['Wind_onshore_forecast_entsoe'] - filter_df['Wind_offshore_forecast_entsoe'] - filter_df['Solar_forecast_entsoe']
|
| 500 |
+
error = (net_load_forecast - net_load).iloc[-1]
|
| 501 |
date = filter_df.index[-1].strftime("%Y-%m-%d %H:%M") # Get the latest date in string format
|
| 502 |
return error, date
|
| 503 |
|
|
|
|
| 571 |
|
| 572 |
# Call the function to plot the map
|
| 573 |
plot_net_load_error_map(data_dict)
|
| 574 |
+
# CSS to adjust layout and remove extra spacing
|
| 575 |
|
| 576 |
st.subheader("rMAE of Forecasts published on ENTSO-E TP")
|
| 577 |
st.write("""
|