Spaces:
Runtime error
Runtime error
| from typing import Any, Dict, Optional, Tuple, Union, List, Callable | |
| import torch, os, math | |
| from torch import nn | |
| from PIL import Image | |
| from tqdm import tqdm | |
| from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
| from diffusers.models.modeling_outputs import Transformer2DModelOutput | |
| from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel | |
| from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, CogVideoXPipelineOutput | |
| from diffusers.pipelines.cogvideo.pipeline_cogvideox_image2video import CogVideoXImageToVideoPipeline | |
| from diffusers.pipelines.cogvideo.pipeline_cogvideox_video2video import CogVideoXVideoToVideoPipeline | |
| from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
| from diffusers.pipelines.cogvideo.pipeline_cogvideox import retrieve_timesteps | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel | |
| from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler | |
| from diffusers.pipelines import DiffusionPipeline | |
| from diffusers.models.modeling_utils import ModelMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| class CogVideoXTransformer3DModelTracking(CogVideoXTransformer3DModel, ModelMixin): | |
| """ | |
| Add tracking maps to the CogVideoX transformer model. | |
| Parameters: | |
| num_tracking_blocks (`int`, defaults to `18`): | |
| The number of tracking blocks to use. Must be less than or equal to num_layers. | |
| """ | |
| def __init__( | |
| self, | |
| num_tracking_blocks: Optional[int] = 18, | |
| num_attention_heads: int = 30, | |
| attention_head_dim: int = 64, | |
| in_channels: int = 16, | |
| out_channels: Optional[int] = 16, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| time_embed_dim: int = 512, | |
| text_embed_dim: int = 4096, | |
| num_layers: int = 30, | |
| dropout: float = 0.0, | |
| attention_bias: bool = True, | |
| sample_width: int = 90, | |
| sample_height: int = 60, | |
| sample_frames: int = 49, | |
| patch_size: int = 2, | |
| temporal_compression_ratio: int = 4, | |
| max_text_seq_length: int = 226, | |
| activation_fn: str = "gelu-approximate", | |
| timestep_activation_fn: str = "silu", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| spatial_interpolation_scale: float = 1.875, | |
| temporal_interpolation_scale: float = 1.0, | |
| use_rotary_positional_embeddings: bool = False, | |
| use_learned_positional_embeddings: bool = False, | |
| **kwargs | |
| ): | |
| super().__init__( | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| flip_sin_to_cos=flip_sin_to_cos, | |
| freq_shift=freq_shift, | |
| time_embed_dim=time_embed_dim, | |
| text_embed_dim=text_embed_dim, | |
| num_layers=num_layers, | |
| dropout=dropout, | |
| attention_bias=attention_bias, | |
| sample_width=sample_width, | |
| sample_height=sample_height, | |
| sample_frames=sample_frames, | |
| patch_size=patch_size, | |
| temporal_compression_ratio=temporal_compression_ratio, | |
| max_text_seq_length=max_text_seq_length, | |
| activation_fn=activation_fn, | |
| timestep_activation_fn=timestep_activation_fn, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| spatial_interpolation_scale=spatial_interpolation_scale, | |
| temporal_interpolation_scale=temporal_interpolation_scale, | |
| use_rotary_positional_embeddings=use_rotary_positional_embeddings, | |
| use_learned_positional_embeddings=use_learned_positional_embeddings, | |
| **kwargs | |
| ) | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.num_tracking_blocks = num_tracking_blocks | |
| # Ensure num_tracking_blocks is not greater than num_layers | |
| if num_tracking_blocks > num_layers: | |
| raise ValueError("num_tracking_blocks must be less than or equal to num_layers") | |
| # Create linear layers for combining hidden states and tracking maps | |
| self.combine_linears = nn.ModuleList( | |
| [nn.Linear(inner_dim, inner_dim) for _ in range(num_tracking_blocks)] | |
| ) | |
| # Initialize weights of combine_linears to zero | |
| for linear in self.combine_linears: | |
| linear.weight.data.zero_() | |
| linear.bias.data.zero_() | |
| # Create transformer blocks for processing tracking maps | |
| self.transformer_blocks_copy = nn.ModuleList( | |
| [ | |
| CogVideoXBlock( | |
| dim=inner_dim, | |
| num_attention_heads=self.config.num_attention_heads, | |
| attention_head_dim=self.config.attention_head_dim, | |
| time_embed_dim=self.config.time_embed_dim, | |
| dropout=self.config.dropout, | |
| activation_fn=self.config.activation_fn, | |
| attention_bias=self.config.attention_bias, | |
| norm_elementwise_affine=self.config.norm_elementwise_affine, | |
| norm_eps=self.config.norm_eps, | |
| ) | |
| for _ in range(num_tracking_blocks) | |
| ] | |
| ) | |
| # For initial combination of hidden states and tracking maps | |
| self.initial_combine_linear = nn.Linear(inner_dim, inner_dim) | |
| self.initial_combine_linear.weight.data.zero_() | |
| self.initial_combine_linear.bias.data.zero_() | |
| # Freeze all parameters | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| # Unfreeze parameters that need to be trained | |
| for linear in self.combine_linears: | |
| for param in linear.parameters(): | |
| param.requires_grad = True | |
| for block in self.transformer_blocks_copy: | |
| for param in block.parameters(): | |
| param.requires_grad = True | |
| for param in self.initial_combine_linear.parameters(): | |
| param.requires_grad = True | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| tracking_maps: torch.Tensor, | |
| timestep: Union[int, float, torch.LongTensor], | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ): | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| batch_size, num_frames, channels, height, width = hidden_states.shape | |
| # 1. Time embedding | |
| timesteps = timestep | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=hidden_states.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| # 2. Patch embedding | |
| hidden_states = self.patch_embed(encoder_hidden_states, hidden_states) | |
| hidden_states = self.embedding_dropout(hidden_states) | |
| # Process tracking maps | |
| prompt_embed = encoder_hidden_states.clone() | |
| tracking_maps_hidden_states = self.patch_embed(prompt_embed, tracking_maps) | |
| tracking_maps_hidden_states = self.embedding_dropout(tracking_maps_hidden_states) | |
| del prompt_embed | |
| text_seq_length = encoder_hidden_states.shape[1] | |
| encoder_hidden_states = hidden_states[:, :text_seq_length] | |
| hidden_states = hidden_states[:, text_seq_length:] | |
| tracking_maps = tracking_maps_hidden_states[:, text_seq_length:] | |
| # Combine hidden states and tracking maps initially | |
| combined = hidden_states + tracking_maps | |
| tracking_maps = self.initial_combine_linear(combined) | |
| # Process transformer blocks | |
| for i in range(len(self.transformer_blocks)): | |
| if self.training and self.gradient_checkpointing: | |
| # Gradient checkpointing logic for hidden states | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.transformer_blocks[i]), | |
| hidden_states, | |
| encoder_hidden_states, | |
| emb, | |
| image_rotary_emb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states, encoder_hidden_states = self.transformer_blocks[i]( | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| temb=emb, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| if i < len(self.transformer_blocks_copy): | |
| if self.training and self.gradient_checkpointing: | |
| # Gradient checkpointing logic for tracking maps | |
| tracking_maps, _ = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(self.transformer_blocks_copy[i]), | |
| tracking_maps, | |
| encoder_hidden_states, | |
| emb, | |
| image_rotary_emb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| tracking_maps, _ = self.transformer_blocks_copy[i]( | |
| hidden_states=tracking_maps, | |
| encoder_hidden_states=encoder_hidden_states, | |
| temb=emb, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| # Combine hidden states and tracking maps | |
| tracking_maps = self.combine_linears[i](tracking_maps) | |
| hidden_states = hidden_states + tracking_maps | |
| if not self.config.use_rotary_positional_embeddings: | |
| # CogVideoX-2B | |
| hidden_states = self.norm_final(hidden_states) | |
| else: | |
| # CogVideoX-5B | |
| hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) | |
| hidden_states = self.norm_final(hidden_states) | |
| hidden_states = hidden_states[:, text_seq_length:] | |
| # 4. Final block | |
| hidden_states = self.norm_out(hidden_states, temb=emb) | |
| hidden_states = self.proj_out(hidden_states) | |
| # 5. Unpatchify | |
| # Note: we use `-1` instead of `channels`: | |
| # - It is okay to `channels` use for CogVideoX-2b and CogVideoX-5b (number of input channels is equal to output channels) | |
| # - However, for CogVideoX-5b-I2V also takes concatenated input image latents (number of input channels is twice the output channels) | |
| p = self.config.patch_size | |
| output = hidden_states.reshape(batch_size, num_frames, height // p, width // p, -1, p, p) | |
| output = output.permute(0, 1, 4, 2, 5, 3, 6).flatten(5, 6).flatten(3, 4) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| if not return_dict: | |
| return (output,) | |
| return Transformer2DModelOutput(sample=output) | |
| def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): | |
| try: | |
| model = super().from_pretrained(pretrained_model_name_or_path, **kwargs) | |
| print("Loaded DiffusionAsShader checkpoint directly.") | |
| for param in model.parameters(): | |
| param.requires_grad = False | |
| for linear in model.combine_linears: | |
| for param in linear.parameters(): | |
| param.requires_grad = True | |
| for block in model.transformer_blocks_copy: | |
| for param in block.parameters(): | |
| param.requires_grad = True | |
| for param in model.initial_combine_linear.parameters(): | |
| param.requires_grad = True | |
| return model | |
| except Exception as e: | |
| print(f"Failed to load as DiffusionAsShader: {e}") | |
| print("Attempting to load as CogVideoXTransformer3DModel and convert...") | |
| base_model = CogVideoXTransformer3DModel.from_pretrained(pretrained_model_name_or_path, **kwargs) | |
| config = dict(base_model.config) | |
| config["num_tracking_blocks"] = kwargs.pop("num_tracking_blocks", 18) | |
| model = cls(**config) | |
| model.load_state_dict(base_model.state_dict(), strict=False) | |
| model.initial_combine_linear.weight.data.zero_() | |
| model.initial_combine_linear.bias.data.zero_() | |
| for linear in model.combine_linears: | |
| linear.weight.data.zero_() | |
| linear.bias.data.zero_() | |
| for i in range(model.num_tracking_blocks): | |
| model.transformer_blocks_copy[i].load_state_dict(model.transformer_blocks[i].state_dict()) | |
| for param in model.parameters(): | |
| param.requires_grad = False | |
| for linear in model.combine_linears: | |
| for param in linear.parameters(): | |
| param.requires_grad = True | |
| for block in model.transformer_blocks_copy: | |
| for param in block.parameters(): | |
| param.requires_grad = True | |
| for param in model.initial_combine_linear.parameters(): | |
| param.requires_grad = True | |
| return model | |
| def save_pretrained( | |
| self, | |
| save_directory: Union[str, os.PathLike], | |
| is_main_process: bool = True, | |
| save_function: Optional[Callable] = None, | |
| safe_serialization: bool = True, | |
| variant: Optional[str] = None, | |
| max_shard_size: Union[int, str] = "5GB", | |
| push_to_hub: bool = False, | |
| **kwargs, | |
| ): | |
| super().save_pretrained( | |
| save_directory, | |
| is_main_process=is_main_process, | |
| save_function=save_function, | |
| safe_serialization=safe_serialization, | |
| variant=variant, | |
| max_shard_size=max_shard_size, | |
| push_to_hub=push_to_hub, | |
| **kwargs, | |
| ) | |
| if is_main_process: | |
| config_dict = dict(self.config) | |
| config_dict.pop("_name_or_path", None) | |
| config_dict.pop("_use_default_values", None) | |
| config_dict["_class_name"] = "CogVideoXTransformer3DModelTracking" | |
| config_dict["num_tracking_blocks"] = self.num_tracking_blocks | |
| os.makedirs(save_directory, exist_ok=True) | |
| with open(os.path.join(save_directory, "config.json"), "w", encoding="utf-8") as f: | |
| import json | |
| json.dump(config_dict, f, indent=2) | |
| class CogVideoXPipelineTracking(CogVideoXPipeline, DiffusionPipeline): | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKLCogVideoX, | |
| transformer: CogVideoXTransformer3DModelTracking, | |
| scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], | |
| ): | |
| super().__init__(tokenizer, text_encoder, vae, transformer, scheduler) | |
| if not isinstance(self.transformer, CogVideoXTransformer3DModelTracking): | |
| raise ValueError("The transformer in this pipeline must be of type CogVideoXTransformer3DModelTracking") | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 480, | |
| width: int = 720, | |
| num_frames: int = 49, | |
| num_inference_steps: int = 50, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: float = 6, | |
| use_dynamic_cfg: bool = False, | |
| num_videos_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: str = "pil", | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 226, | |
| tracking_maps: Optional[torch.Tensor] = None, | |
| ) -> Union[CogVideoXPipelineOutput, Tuple]: | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| num_videos_per_prompt = 1 | |
| self.check_inputs( | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| negative_prompt, | |
| do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| self._num_timesteps = len(timesteps) | |
| latent_channels = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| latent_channels, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| image_rotary_emb = ( | |
| self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | |
| if self.transformer.config.use_rotary_positional_embeddings | |
| else None | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| old_pred_original_sample = None | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| tracking_maps_latent = torch.cat([tracking_maps] * 2) if do_classifier_free_guidance else tracking_maps | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=timestep, | |
| image_rotary_emb=image_rotary_emb, | |
| attention_kwargs=attention_kwargs, | |
| tracking_maps=tracking_maps_latent, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred.float() | |
| if use_dynamic_cfg: | |
| self._guidance_scale = 1 + guidance_scale * ( | |
| (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | |
| ) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| else: | |
| latents, old_pred_original_sample = self.scheduler.step( | |
| noise_pred, | |
| old_pred_original_sample, | |
| t, | |
| timesteps[i - 1] if i > 0 else None, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| ) | |
| latents = latents.to(prompt_embeds.dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if not output_type == "latent": | |
| video = self.decode_latents(latents) | |
| video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
| else: | |
| video = latents | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return CogVideoXPipelineOutput(frames=video) | |
| class CogVideoXImageToVideoPipelineTracking(CogVideoXImageToVideoPipeline, DiffusionPipeline): | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKLCogVideoX, | |
| transformer: CogVideoXTransformer3DModelTracking, | |
| scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], | |
| ): | |
| super().__init__(tokenizer, text_encoder, vae, transformer, scheduler) | |
| if not isinstance(self.transformer, CogVideoXTransformer3DModelTracking): | |
| raise ValueError("The transformer in this pipeline must be of type CogVideoXTransformer3DModelTracking") | |
| # 打印transformer blocks的数量 | |
| print(f"Number of transformer blocks: {len(self.transformer.transformer_blocks)}") | |
| print(f"Number of tracking transformer blocks: {len(self.transformer.transformer_blocks_copy)}") | |
| self.transformer = torch.compile(self.transformer) | |
| def __call__( | |
| self, | |
| image: Union[torch.Tensor, Image.Image], | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_frames: int = 49, | |
| num_inference_steps: int = 50, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: float = 6, | |
| use_dynamic_cfg: bool = False, | |
| num_videos_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: str = "pil", | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 226, | |
| tracking_maps: Optional[torch.Tensor] = None, | |
| tracking_image: Optional[torch.Tensor] = None, | |
| ) -> Union[CogVideoXPipelineOutput, Tuple]: | |
| # Most of the implementation remains the same as the parent class | |
| # We will modify the parts that need to handle tracking_maps | |
| # 1. Check inputs and set default values | |
| self.check_inputs( | |
| image, | |
| prompt, | |
| height, | |
| width, | |
| negative_prompt, | |
| callback_on_step_end_tensor_inputs, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| del negative_prompt_embeds | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latents | |
| image = self.video_processor.preprocess(image, height=height, width=width).to( | |
| device, dtype=prompt_embeds.dtype | |
| ) | |
| tracking_image = self.video_processor.preprocess(tracking_image, height=height, width=width).to( | |
| device, dtype=prompt_embeds.dtype | |
| ) | |
| if self.transformer.config.in_channels != 16: | |
| latent_channels = self.transformer.config.in_channels // 2 | |
| else: | |
| latent_channels = self.transformer.config.in_channels | |
| latents, image_latents = self.prepare_latents( | |
| image, | |
| batch_size * num_videos_per_prompt, | |
| latent_channels, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| del image | |
| _, tracking_image_latents = self.prepare_latents( | |
| tracking_image, | |
| batch_size * num_videos_per_prompt, | |
| latent_channels, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| ) | |
| del tracking_image | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Create rotary embeds if required | |
| image_rotary_emb = ( | |
| self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | |
| if self.transformer.config.use_rotary_positional_embeddings | |
| else None | |
| ) | |
| # 8. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| old_pred_original_sample = None | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents | |
| latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2) | |
| del latent_image_input | |
| # Handle tracking maps | |
| if tracking_maps is not None: | |
| latents_tracking_image = torch.cat([tracking_image_latents] * 2) if do_classifier_free_guidance else tracking_image_latents | |
| tracking_maps_input = torch.cat([tracking_maps] * 2) if do_classifier_free_guidance else tracking_maps | |
| tracking_maps_input = torch.cat([tracking_maps_input, latents_tracking_image], dim=2) | |
| del latents_tracking_image | |
| else: | |
| tracking_maps_input = None | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| # Predict noise | |
| self.transformer.to(dtype=latent_model_input.dtype) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=timestep, | |
| image_rotary_emb=image_rotary_emb, | |
| attention_kwargs=attention_kwargs, | |
| tracking_maps=tracking_maps_input, | |
| return_dict=False, | |
| )[0] | |
| del latent_model_input | |
| if tracking_maps_input is not None: | |
| del tracking_maps_input | |
| noise_pred = noise_pred.float() | |
| # perform guidance | |
| if use_dynamic_cfg: | |
| self._guidance_scale = 1 + guidance_scale * ( | |
| (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | |
| ) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| del noise_pred_uncond, noise_pred_text | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| else: | |
| latents, old_pred_original_sample = self.scheduler.step( | |
| noise_pred, | |
| old_pred_original_sample, | |
| t, | |
| timesteps[i - 1] if i > 0 else None, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| ) | |
| del noise_pred | |
| latents = latents.to(prompt_embeds.dtype) | |
| # call the callback, if provided | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| # 9. Post-processing | |
| if not output_type == "latent": | |
| video = self.decode_latents(latents) | |
| video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return CogVideoXPipelineOutput(frames=video) | |
| class CogVideoXVideoToVideoPipelineTracking(CogVideoXVideoToVideoPipeline, DiffusionPipeline): | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| vae: AutoencoderKLCogVideoX, | |
| transformer: CogVideoXTransformer3DModelTracking, | |
| scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler], | |
| ): | |
| super().__init__(tokenizer, text_encoder, vae, transformer, scheduler) | |
| if not isinstance(self.transformer, CogVideoXTransformer3DModelTracking): | |
| raise ValueError("The transformer in this pipeline must be of type CogVideoXTransformer3DModelTracking") | |
| def __call__( | |
| self, | |
| video: List[Image.Image] = None, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| height: int = 480, | |
| width: int = 720, | |
| num_inference_steps: int = 50, | |
| timesteps: Optional[List[int]] = None, | |
| strength: float = 0.8, | |
| guidance_scale: float = 6, | |
| use_dynamic_cfg: bool = False, | |
| num_videos_per_prompt: int = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: str = "pil", | |
| return_dict: bool = True, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[ | |
| Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
| ] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 226, | |
| tracking_maps: Optional[torch.Tensor] = None, | |
| ) -> Union[CogVideoXPipelineOutput, Tuple]: | |
| if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
| callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
| num_videos_per_prompt = 1 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| strength=strength, | |
| negative_prompt=negative_prompt, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| video=video, | |
| latents=latents, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._attention_kwargs = attention_kwargs | |
| self._interrupt = False | |
| # 2. Default call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| negative_prompt, | |
| do_classifier_free_guidance, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| max_sequence_length=max_sequence_length, | |
| device=device, | |
| ) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| # 4. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, timesteps, strength, device) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_videos_per_prompt) | |
| self._num_timesteps = len(timesteps) | |
| # 5. Prepare latents | |
| if latents is None: | |
| video = self.video_processor.preprocess_video(video, height=height, width=width) | |
| video = video.to(device=device, dtype=prompt_embeds.dtype) | |
| latent_channels = self.transformer.config.in_channels | |
| latents = self.prepare_latents( | |
| video, | |
| batch_size * num_videos_per_prompt, | |
| latent_channels, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| latent_timestep, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Create rotary embeds if required | |
| image_rotary_emb = ( | |
| self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device) | |
| if self.transformer.config.use_rotary_positional_embeddings | |
| else None | |
| ) | |
| # 8. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| # for DPM-solver++ | |
| old_pred_original_sample = None | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| tracking_maps_input = torch.cat([tracking_maps] * 2) if do_classifier_free_guidance else tracking_maps | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
| timestep = t.expand(latent_model_input.shape[0]) | |
| # predict noise model_output | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| encoder_hidden_states=prompt_embeds, | |
| timestep=timestep, | |
| image_rotary_emb=image_rotary_emb, | |
| attention_kwargs=attention_kwargs, | |
| tracking_maps=tracking_maps_input, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred.float() | |
| # perform guidance | |
| if use_dynamic_cfg: | |
| self._guidance_scale = 1 + guidance_scale * ( | |
| (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 | |
| ) | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| if not isinstance(self.scheduler, CogVideoXDPMScheduler): | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| else: | |
| latents, old_pred_original_sample = self.scheduler.step( | |
| noise_pred, | |
| old_pred_original_sample, | |
| t, | |
| timesteps[i - 1] if i > 0 else None, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| ) | |
| latents = latents.to(prompt_embeds.dtype) | |
| # call the callback, if provided | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if not output_type == "latent": | |
| video = self.decode_latents(latents) | |
| video = self.video_processor.postprocess_video(video=video, output_type=output_type) | |
| else: | |
| video = latents | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return CogVideoXPipelineOutput(frames=video) | |