Spaces:
Running
Running
| import os | |
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, AutoencoderKL | |
| from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTextConfig | |
| from safetensors.torch import load_file | |
| from collections import OrderedDict | |
| import requests | |
| from urllib.parse import urlparse, unquote | |
| from pathlib import Path | |
| import hashlib | |
| from datetime import datetime | |
| from typing import Dict, List, Optional | |
| from huggingface_hub import login, HfApi, hf_hub_download | |
| from huggingface_hub.utils import validate_repo_id, HFValidationError | |
| from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE | |
| import subprocess # Import subprocess | |
| from huggingface_hub.utils import HfHubHTTPError | |
| from accelerate import Accelerator | |
| import re # Import the 're' module | |
| # ---------------------- DEPENDENCIES ---------------------- | |
| def install_dependencies_gradio(): | |
| """Installs the necessary dependencies.""" | |
| try: | |
| subprocess.run( | |
| [ | |
| "pip", | |
| "install", | |
| "-U", | |
| "torch", | |
| "diffusers", | |
| "transformers", | |
| "accelerate", | |
| "safetensors", | |
| "huggingface_hub", | |
| "xformers", | |
| ], | |
| check=True, | |
| capture_output=True, | |
| text=True | |
| ) | |
| print("Dependencies installed successfully.") | |
| except subprocess.CalledProcessError as e: | |
| print(f"Error installing dependencies:\n{e.stderr}") | |
| raise | |
| # ---------------------- UTILITY FUNCTIONS ---------------------- | |
| def download_model(model_path_or_url): | |
| """Downloads a model, handling URLs, HF repos, and local paths.""" | |
| try: | |
| # 1. Check if it's a valid Hugging Face repo ID | |
| try: | |
| validate_repo_id(model_path_or_url) | |
| local_path = hf_hub_download(repo_id=model_path_or_url) | |
| return local_path | |
| except HFValidationError: | |
| pass | |
| # 2. Check if it's a URL | |
| if model_path_or_url.startswith("http://") or model_path_or_url.startswith("https://"): | |
| response = requests.get(model_path_or_url, stream=True) | |
| response.raise_for_status() | |
| parsed_url = urlparse(model_path_or_url) | |
| filename = os.path.basename(unquote(parsed_url.path)) | |
| if not filename: | |
| filename = hashlib.sha256(model_path_or_url.encode()).hexdigest() | |
| cache_dir = os.path.join(HUGGINGFACE_HUB_CACHE, "downloads") | |
| os.makedirs(cache_dir, exist_ok=True) | |
| local_path = os.path.join(cache_dir, filename) | |
| with open(local_path, "wb") as f: | |
| for chunk in response.iter_content(chunk_size=8192): | |
| f.write(chunk) | |
| return local_path | |
| # 3. Check if it's a local file | |
| elif os.path.isfile(model_path_or_url): | |
| return model_path_or_url | |
| # 4. Handle Hugging Face repo with a specific file | |
| else: | |
| try: | |
| parts = model_path_or_url.split("/", 1) | |
| if len(parts) == 2: | |
| repo_id, filename = parts | |
| validate_repo_id(repo_id) | |
| local_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
| return local_path | |
| else: | |
| raise ValueError("Invalid input format.") | |
| except HFValidationError: | |
| raise ValueError(f"Invalid model path or URL: {model_path_or_url}") | |
| except Exception as e: | |
| raise ValueError(f"Error downloading or accessing model: {e}") | |
| def create_model_repo(api, user, orgs_name, model_name, make_private=False): | |
| """Creates a Hugging Face model repository, handling missing inputs and sanitizing the username.""" | |
| print("---- create_model_repo Called ----") | |
| print(f" user: {user}") | |
| print(f" orgs_name: {orgs_name}") | |
| print(f" model_name: {model_name}") | |
| if not model_name: | |
| model_name = f"converted-model-{datetime.now().strftime('%Y%m%d%H%M%S')}" | |
| print(f" Using default model_name: {model_name}") | |
| # --- Sanitize model_name and orgs_name --- | |
| if orgs_name: | |
| orgs_name = re.sub(r"[^a-zA-Z0-9._-]", "-", orgs_name) | |
| print(f" Sanitized orgs_name: {orgs_name}") | |
| if model_name: | |
| model_name = re.sub(r"[^a-zA-Z0-9._-]", "-", model_name) | |
| print(f" Sanitized model_name: {model_name}") | |
| if orgs_name: | |
| repo_id = f"{orgs_name}/{model_name.strip()}" | |
| elif user: | |
| sanitized_username = re.sub(r"[^a-zA-Z0-9._-]", "-", user['name']) | |
| print(f" Original Username: {user['name']}") | |
| print(f" Sanitized Username: {sanitized_username}") | |
| repo_id = f"{sanitized_username}/{model_name.strip()}" | |
| else: | |
| raise ValueError( | |
| "Must provide either an organization name or be logged in." | |
| ) | |
| print(f" repo_id: {repo_id}") | |
| try: | |
| api.create_repo(repo_id=repo_id, repo_type="model", private=make_private) | |
| print(f"Model repo '{repo_id}' created.") | |
| return repo_id | |
| except Exception as e: | |
| print(f"Error creating repo: {e}") | |
| raise | |
| def load_sdxl_checkpoint(checkpoint_path): | |
| """Loads checkpoint and extracts state dicts.""" | |
| if checkpoint_path.endswith(".safetensors"): | |
| state_dict = load_file(checkpoint_path, device="cpu") | |
| elif checkpoint_path.endswith(".ckpt"): | |
| state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"] | |
| else: | |
| raise ValueError("Unsupported checkpoint format. Must be .safetensors or .ckpt") | |
| text_encoder1_state = OrderedDict() | |
| text_encoder2_state = OrderedDict() | |
| vae_state = OrderedDict() | |
| unet_state = OrderedDict() | |
| for key, value in state_dict.items(): | |
| if key.startswith("first_stage_model."): # VAE | |
| vae_state[key.replace("first_stage_model.", "")] = value.to(torch.float16) | |
| elif key.startswith("condition_model.model.text_encoder."): # First Text Encoder | |
| text_encoder1_state[key.replace("condition_model.model.text_encoder.", "")] = value.to(torch.float16) | |
| elif key.startswith("condition_model.model.text_encoder_2."): # Second Text Encoder | |
| text_encoder2_state[key.replace("condition_model.model.text_encoder_2.", "")] = value.to(torch.float16) | |
| elif key.startswith("model.diffusion_model."): # UNet | |
| unet_state[key.replace("model.diffusion_model.", "")] = value.to(torch.float16) | |
| return text_encoder1_state, text_encoder2_state, vae_state, unet_state | |
| def build_diffusers_model(text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path=None): | |
| """Builds Diffusers components using accelerate for low-memory loading.""" | |
| if not reference_model_path: | |
| reference_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
| # Initialize the Accelerator | |
| accelerator = Accelerator(mixed_precision="fp16") # Use mixed precision | |
| device = accelerator.device | |
| # Load configurations from the reference model | |
| config_text_encoder1 = CLIPTextConfig.from_pretrained( | |
| reference_model_path, subfolder="text_encoder" | |
| ) | |
| config_text_encoder2 = CLIPTextConfig.from_pretrained( | |
| reference_model_path, subfolder="text_encoder_2" | |
| ) | |
| # Use from_pretrained with device_map and low_cpu_mem_usage for all components | |
| text_encoder1 = CLIPTextModel.from_pretrained(reference_model_path, subfolder="text_encoder", config=config_text_encoder1, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(device) | |
| text_encoder2 = CLIPTextModelWithProjection.from_pretrained(reference_model_path, subfolder="text_encoder_2", config=config_text_encoder2, low_cpu_mem_usage=True, torch_dtype=torch.float16).to(device) | |
| vae = AutoencoderKL.from_pretrained(reference_model_path, subfolder="vae", low_cpu_mem_usage=True, torch_dtype=torch.float16).to(device) | |
| unet = UNet2DConditionModel.from_pretrained(reference_model_path, subfolder="unet", low_cpu_mem_usage=True, torch_dtype=torch.float16).to(device) | |
| # Load state dicts with strict=False | |
| text_encoder1.load_state_dict(text_encoder1_state, strict=False) | |
| text_encoder2.load_state_dict(text_encoder2_state, strict=False) | |
| vae.load_state_dict(vae_state, strict=False) | |
| unet.load_state_dict(unet_state, strict=False) | |
| return text_encoder1, text_encoder2, vae, unet | |
| def convert_and_save_sdxl_to_diffusers(checkpoint_path_or_url, output_path, reference_model_path): | |
| """Converts and saves the checkpoint to Diffusers format.""" | |
| checkpoint_path = download_model(checkpoint_path_or_url) | |
| text_encoder1_state, text_encoder2_state, vae_state, unet_state = load_sdxl_checkpoint(checkpoint_path) | |
| text_encoder1, text_encoder2, vae, unet = build_diffusers_model( | |
| text_encoder1_state, text_encoder2_state, vae_state, unet_state, reference_model_path | |
| ) | |
| # Load tokenizer and scheduler from the reference model | |
| pipeline = StableDiffusionXLPipeline.from_pretrained( | |
| reference_model_path, | |
| text_encoder=text_encoder1, | |
| text_encoder_2=text_encoder2, | |
| vae=vae, | |
| unet=unet, | |
| torch_dtype=torch.float16, | |
| ) | |
| pipeline.save_pretrained(output_path) | |
| print(f"Model saved as Diffusers format: {output_path}") | |
| # ---------------------- MAIN FUNCTION (with Debugging Prints) ---------------------- | |
| def main( | |
| model_to_load, | |
| reference_model, | |
| output_path, | |
| hf_token, | |
| orgs_name, | |
| model_name, | |
| make_private, | |
| ): | |
| """Main function: SDXL checkpoint to Diffusers, always fp16.""" | |
| print("---- Main Function Called ----") | |
| print(f" model_to_load: {model_to_load}") | |
| print(f" reference_model: {reference_model}") | |
| print(f" output_path: {output_path}") | |
| print(f" hf_token: {hf_token}") | |
| print(f" orgs_name: {orgs_name}") | |
| print(f" model_name: {model_name}") | |
| print(f" make_private: {make_private}") | |
| # --- Force Login at the Beginning of main() --- | |
| try: | |
| login(token=hf_token, add_to_git_credential=True) | |
| api = HfApi() | |
| user = api.whoami() # Get logged-in user info | |
| print(f" Logged-in user: {user}") | |
| except Exception as e: | |
| error_message = f"Error during login: {e} Ensure a valid WRITE token is provided." | |
| print(f"---- Main Function Error: {error_message} ----") | |
| return error_message | |
| # --- Strip Whitespace and Sanitize from Inputs --- | |
| model_to_load = model_to_load.strip() | |
| reference_model = reference_model.strip() | |
| output_path = output_path.strip() | |
| hf_token = hf_token.strip() # Even though it's a password field | |
| orgs_name = orgs_name.strip() if orgs_name else "" | |
| model_name = model_name.strip() if model_name else "" | |
| # --- Sanitize model_name and orgs_name --- | |
| if orgs_name: | |
| orgs_name = re.sub(r"[^a-zA-Z0-9._-]", "-", orgs_name) | |
| if model_name: | |
| model_name = re.sub(r"[^a-zA-Z0-9._-]", "-", model_name) | |
| try: | |
| convert_and_save_sdxl_to_diffusers(model_to_load, output_path, reference_model) | |
| # --- Create Repo and Upload (Simplified) --- | |
| if not model_name: | |
| model_name = f"converted-model-{datetime.now().strftime('%Y%m%d%H%M%S')}" | |
| print(f"Using default model_name: {model_name}") | |
| if orgs_name: | |
| repo_id = f"{orgs_name}/{model_name}" | |
| elif user: | |
| # Sanitize username here as well: | |
| sanitized_username = re.sub(r"[^a-zA-Z0-9._-]", "-", user['name']) | |
| print(f" Sanitized Username: {sanitized_username}") | |
| repo_id = f"{sanitized_username}/{model_name}" | |
| else: # Should never happen because of login, but good practice | |
| raise ValueError("Must provide either an organization name or be logged in.") | |
| print(f"repo_id = {repo_id}") | |
| try: | |
| api.create_repo(repo_id=repo_id, repo_type="model", private=make_private) | |
| print(f"Model repo '{repo_id}' created.") | |
| except Exception as e: | |
| print(f"Error in creating model repo: {e}") | |
| raise | |
| api.upload_folder(folder_path=output_path, repo_id=repo_id) | |
| print(f"Model uploaded to: https://huggingface.co/{repo_id}") | |
| result = "Conversion and upload completed successfully!" | |
| print(f"---- Main Function Successful: {result} ----") | |
| return result | |
| except Exception as e: | |
| error_message = f"An error occurred: {e}" | |
| print(f"---- Main Function Error: {error_message} ----") | |
| return error_message | |
| # ---------------------- GRADIO INTERFACE ---------------------- | |
| css = """ | |
| #main-container { | |
| display: flex; | |
| flex-direction: column; | |
| font-family: 'Arial', sans-serif; | |
| font-size: 16px; | |
| color: #333; | |
| } | |
| #convert-button { | |
| margin-top: 1em; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.Markdown( | |
| """ | |
| # π¨ SDXL Model Converter | |
| Convert SDXL checkpoints to Diffusers format (FP16, CPU-only). | |
| ### π₯ Input Sources Supported: | |
| - Local model files (.safetensors, .ckpt) | |
| - Direct URLs to model files | |
| - Hugging Face model repositories (e.g., 'my-org/my-model' or 'my-org/my-model/file.safetensors') | |
| ### βΉοΈ Important Notes: | |
| - This tool runs on **CPU**, conversion might be slower than on GPU. | |
| - For Hugging Face uploads, you need a **WRITE** token (not a read token). | |
| - Get your HF token here: [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens) | |
| ### πΎ Memory Usage: | |
| - This space is configured for **FP16** precision to reduce memory usage. | |
| - Close other applications during conversion. | |
| - For large models, ensure you have at least 16GB of RAM. | |
| ### π» Source Code: | |
| - [GitHub Repository](https://github.com/Ktiseos-Nyx/Gradio-SDXL-Diffusers) | |
| ### π Support: | |
| - If you're interested in funding more projects: [Ko-fi](https://ko-fi.com/duskfallcrew) | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_to_load = gr.Textbox( | |
| label="SDXL Checkpoint (Path, URL, or HF Repo)", | |
| placeholder="Path, URL, or Hugging Face Repo ID (e.g., my-org/my-model or my-org/my-model/file.safetensors)", | |
| ) | |
| reference_model = gr.Textbox( | |
| label="Reference Diffusers Model (Optional)", | |
| placeholder="e.g., stabilityai/stable-diffusion-xl-base-1.0 (Leave blank for default)", | |
| ) | |
| output_path = gr.Textbox(label="Output Path (Diffusers Format)", value="output") | |
| hf_token = gr.Textbox(label="Hugging Face Token", placeholder="Your Hugging Face write token", type="password") | |
| orgs_name = gr.Textbox(label="Organization Name (Optional)", placeholder="Your organization name") | |
| model_name = gr.Textbox(label="Model Name", placeholder="The name of your model on Hugging Face") | |
| make_private = gr.Checkbox(label="Make Repository Private", value=False) | |
| convert_button = gr.Button("Convert and Upload") | |
| with gr.Column(variant="panel"): | |
| output = gr.Markdown(container=True) | |
| convert_button.click( | |
| fn=main, | |
| inputs=[ | |
| model_to_load, | |
| reference_model, | |
| output_path, | |
| hf_token, | |
| orgs_name, | |
| model_name, | |
| make_private, | |
| ], | |
| outputs=output, | |
| ) | |
| demo.launch() |