Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +63 -0
- input_image.jpeg +0 -0
- requirements.txt +1 -0
app.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
from grounded_sam.inference import grounded_segmentation
|
| 4 |
+
from grounded_sam.plot import plot_detections, plot_detections_plotly
|
| 5 |
+
|
| 6 |
+
def app_fn(
|
| 7 |
+
image: gr.Image,
|
| 8 |
+
labels: str,
|
| 9 |
+
threshold: float,
|
| 10 |
+
bounding_box_selection: bool
|
| 11 |
+
) -> str:
|
| 12 |
+
labels = labels.split("\n")
|
| 13 |
+
labels = [label if label.endswith(".") else label + "." for label in labels]
|
| 14 |
+
image_array, detections = grounded_segmentation(image, labels, threshold, True)
|
| 15 |
+
fig_detection = plot_detections_plotly(image_array, detections, bounding_box_selection)
|
| 16 |
+
|
| 17 |
+
return fig_detection
|
| 18 |
+
|
| 19 |
+
if __name__=="__main__":
|
| 20 |
+
title = "Grounding SAM - Text-to-Segmentation Model"
|
| 21 |
+
with gr.Blocks(title=title) as demo:
|
| 22 |
+
gr.Markdown(f"# {title}")
|
| 23 |
+
gr.Markdown(
|
| 24 |
+
"""
|
| 25 |
+
Grounded SAM is a text-to-segmentation model that generates segmentation masks from natural language descriptions.
|
| 26 |
+
This demo uses Grounding DINO in tandem with SAM to generate segmentation masks from text.
|
| 27 |
+
The workflow is as follows:
|
| 28 |
+
1. Select text labels to generate bounding boxes with Grounding DINO.
|
| 29 |
+
2. Prompt the SAM model to generate segmentation masks from the bounding boxes.
|
| 30 |
+
3. Refine the masks if needed.
|
| 31 |
+
4. Visualize the segmentation masks.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
### Notes
|
| 35 |
+
- To pass multiple labels, separate them by a new line.
|
| 36 |
+
- The model may take a few seconds to generate the segmentation masks as we need to run through two models.
|
| 37 |
+
- The refinement is done by default by converting the mask to a polygon and back to a mask with openCV.
|
| 38 |
+
- I use in here a concise implementation, but you can find the full code at [GitHub](https://github.com/EduardoPach/grounded-sam)
|
| 39 |
+
"""
|
| 40 |
+
)
|
| 41 |
+
with gr.Row():
|
| 42 |
+
threshold = gr.Slider(minimum=0, maximum=1, value=0.3, step=0.05, label="Box Threshold")
|
| 43 |
+
labels = gr.Textbox(lines=2, max_lines=5, label="Labels")
|
| 44 |
+
bounding_box_selection = gr.Checkbox(label="Allow Box Selection")
|
| 45 |
+
btn = gr.Button()
|
| 46 |
+
with gr.Row():
|
| 47 |
+
img = gr.Image(type="pil")
|
| 48 |
+
fig = gr.Plot(label="Segmentation Mask")
|
| 49 |
+
|
| 50 |
+
btn.click(fn=app_fn, inputs=[img, labels, threshold, bounding_box_selection], outputs=[fig])
|
| 51 |
+
|
| 52 |
+
gr.Examples(
|
| 53 |
+
[
|
| 54 |
+
["input_image.jpeg", "a person.\na mountain.", 0.25, 0.25],
|
| 55 |
+
],
|
| 56 |
+
inputs = [img, labels, threshold, bounding_box_selection],
|
| 57 |
+
outputs = [fig],
|
| 58 |
+
fn=app_fn,
|
| 59 |
+
cache_examples=True,
|
| 60 |
+
label='Try this example input!'
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
demo.launch()
|
input_image.jpeg
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/EduardoPach/grounded-sam.git
|