Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -25,20 +25,22 @@ app = FastAPI()
|
|
| 25 |
|
| 26 |
# Model names
|
| 27 |
MULTILINGUAL_MODEL_NAME = "Ehrii/sentiment"
|
|
|
|
| 28 |
ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"
|
| 29 |
|
| 30 |
# Load multilingual sentiment model
|
| 31 |
try:
|
| 32 |
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
| 33 |
-
|
| 34 |
-
token=HF_TOKEN,
|
| 35 |
cache_dir=cache_dir
|
| 36 |
)
|
|
|
|
| 37 |
multilingual_model = pipeline(
|
| 38 |
"sentiment-analysis",
|
| 39 |
model=MULTILINGUAL_MODEL_NAME,
|
| 40 |
tokenizer=multilingual_tokenizer,
|
| 41 |
-
token=HF_TOKEN,
|
| 42 |
cache_dir=cache_dir
|
| 43 |
)
|
| 44 |
except Exception as e:
|
|
@@ -49,7 +51,7 @@ try:
|
|
| 49 |
english_model = pipeline(
|
| 50 |
"sentiment-analysis",
|
| 51 |
model=ENGLISH_MODEL_NAME,
|
| 52 |
-
token=HF_TOKEN,
|
| 53 |
cache_dir=cache_dir
|
| 54 |
)
|
| 55 |
except Exception as e:
|
|
@@ -82,7 +84,6 @@ def analyze_sentiment(request: SentimentRequest):
|
|
| 82 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
| 83 |
|
| 84 |
language = detect_language(text)
|
| 85 |
-
# Choose the appropriate model based on detected language
|
| 86 |
model = english_model if language == "en" else multilingual_model
|
| 87 |
result = model(text)
|
| 88 |
|
|
@@ -91,4 +92,4 @@ def analyze_sentiment(request: SentimentRequest):
|
|
| 91 |
language_detected=language,
|
| 92 |
sentiment=result[0]["label"].lower(),
|
| 93 |
confidence_score=result[0]["score"],
|
| 94 |
-
)
|
|
|
|
| 25 |
|
| 26 |
# Model names
|
| 27 |
MULTILINGUAL_MODEL_NAME = "Ehrii/sentiment"
|
| 28 |
+
MULTILINGUAL_TOKENIZER_NAME = "tabularisai/multilingual-sentiment-analysis" # Correct tokenizer
|
| 29 |
ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"
|
| 30 |
|
| 31 |
# Load multilingual sentiment model
|
| 32 |
try:
|
| 33 |
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
| 34 |
+
MULTILINGUAL_TOKENIZER_NAME, # Use correct tokenizer
|
| 35 |
+
token=HF_TOKEN,
|
| 36 |
cache_dir=cache_dir
|
| 37 |
)
|
| 38 |
+
|
| 39 |
multilingual_model = pipeline(
|
| 40 |
"sentiment-analysis",
|
| 41 |
model=MULTILINGUAL_MODEL_NAME,
|
| 42 |
tokenizer=multilingual_tokenizer,
|
| 43 |
+
token=HF_TOKEN,
|
| 44 |
cache_dir=cache_dir
|
| 45 |
)
|
| 46 |
except Exception as e:
|
|
|
|
| 51 |
english_model = pipeline(
|
| 52 |
"sentiment-analysis",
|
| 53 |
model=ENGLISH_MODEL_NAME,
|
| 54 |
+
token=HF_TOKEN,
|
| 55 |
cache_dir=cache_dir
|
| 56 |
)
|
| 57 |
except Exception as e:
|
|
|
|
| 84 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
| 85 |
|
| 86 |
language = detect_language(text)
|
|
|
|
| 87 |
model = english_model if language == "en" else multilingual_model
|
| 88 |
result = model(text)
|
| 89 |
|
|
|
|
| 92 |
language_detected=language,
|
| 93 |
sentiment=result[0]["label"].lower(),
|
| 94 |
confidence_score=result[0]["score"],
|
| 95 |
+
)
|