Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,11 +1,14 @@
|
|
| 1 |
import os
|
| 2 |
-
from fastapi import FastAPI
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import pipeline
|
| 5 |
-
import
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
app = FastAPI()
|
| 11 |
|
|
@@ -22,9 +25,9 @@ class SentimentResponse(BaseModel):
|
|
| 22 |
sentiment: str
|
| 23 |
confidence_score: float
|
| 24 |
|
| 25 |
-
def detect_language(text
|
| 26 |
try:
|
| 27 |
-
return
|
| 28 |
except:
|
| 29 |
return "unknown"
|
| 30 |
|
|
@@ -34,24 +37,18 @@ def home():
|
|
| 34 |
|
| 35 |
@app.post("/analyze/", response_model=SentimentResponse)
|
| 36 |
def analyze_sentiment(request: SentimentRequest):
|
| 37 |
-
if not request.text:
|
| 38 |
-
raise HTTPException(status_code=400, detail="No text provided")
|
| 39 |
-
|
| 40 |
text = request.text
|
| 41 |
language = detect_language(text)
|
| 42 |
-
|
| 43 |
# Choose the appropriate model based on language
|
| 44 |
if language == "en":
|
| 45 |
result = english_model(text)
|
| 46 |
else:
|
| 47 |
result = multilingual_model(text)
|
| 48 |
-
|
| 49 |
-
sentiment = result[0]["label"].lower()
|
| 50 |
-
score = result[0]["score"]
|
| 51 |
-
|
| 52 |
return SentimentResponse(
|
| 53 |
original_text=text,
|
| 54 |
language_detected=language,
|
| 55 |
-
sentiment=
|
| 56 |
-
confidence_score=score
|
| 57 |
)
|
|
|
|
| 1 |
import os
|
| 2 |
+
from fastapi import FastAPI
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from transformers import pipeline
|
| 5 |
+
from langdetect import detect, DetectorFactory
|
| 6 |
|
| 7 |
+
# Ensure consistent language detection results
|
| 8 |
+
DetectorFactory.seed = 0
|
| 9 |
+
|
| 10 |
+
# Set HF cache directory instead of TRANSFORMERS_CACHE
|
| 11 |
+
os.environ["HF_HOME"] = "/app/cache"
|
| 12 |
|
| 13 |
app = FastAPI()
|
| 14 |
|
|
|
|
| 25 |
sentiment: str
|
| 26 |
confidence_score: float
|
| 27 |
|
| 28 |
+
def detect_language(text):
|
| 29 |
try:
|
| 30 |
+
return detect(text)
|
| 31 |
except:
|
| 32 |
return "unknown"
|
| 33 |
|
|
|
|
| 37 |
|
| 38 |
@app.post("/analyze/", response_model=SentimentResponse)
|
| 39 |
def analyze_sentiment(request: SentimentRequest):
|
|
|
|
|
|
|
|
|
|
| 40 |
text = request.text
|
| 41 |
language = detect_language(text)
|
| 42 |
+
|
| 43 |
# Choose the appropriate model based on language
|
| 44 |
if language == "en":
|
| 45 |
result = english_model(text)
|
| 46 |
else:
|
| 47 |
result = multilingual_model(text)
|
| 48 |
+
|
|
|
|
|
|
|
|
|
|
| 49 |
return SentimentResponse(
|
| 50 |
original_text=text,
|
| 51 |
language_detected=language,
|
| 52 |
+
sentiment=result[0]["label"].lower(),
|
| 53 |
+
confidence_score=result[0]["score"],
|
| 54 |
)
|