Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
impor os
|
| 4 |
+
import conch
|
| 5 |
+
from conch.open_clip_custom import create_model_from_pretrained, get_tokenizer, tokenize
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from huggingface_hub import login
|
| 9 |
+
hf=os.getenv('hf')
|
| 10 |
+
login(hf)
|
| 11 |
+
# Load the pretrained model and transforms
|
| 12 |
+
#model = create_model("hf-hub:MahmoodLab/UNI", pretrained=True, init_values=1e-5, dynamic_img_size=True)
|
| 13 |
+
# Load the model
|
| 14 |
+
@st.cache_resource
|
| 15 |
+
def load_model():
|
| 16 |
+
model, preprocess = create_model_from_pretrained('conch_ViT-B-16', "hf_hub:MahmoodLab/conch",hf_auth_token=hf)
|
| 17 |
+
return model, preprocess
|
| 18 |
+
|
| 19 |
+
model, preprocess = load_model()
|
| 20 |
+
|
| 21 |
+
st.title("CONCH - Image Captioning and Retrieval")
|
| 22 |
+
|
| 23 |
+
# Upload an image
|
| 24 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
| 25 |
+
|
| 26 |
+
if uploaded_file:
|
| 27 |
+
# Display uploaded image
|
| 28 |
+
image = Image.open(uploaded_file)
|
| 29 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
| 30 |
+
|
| 31 |
+
# Preprocess and get image embeddings
|
| 32 |
+
image = preprocess(image).unsqueeze(0)
|
| 33 |
+
|
| 34 |
+
with torch.no_grad():
|
| 35 |
+
image_embs = model.encode_image(image, proj_contrast=True, normalize=True)
|
| 36 |
+
|
| 37 |
+
st.write("Image embeddings generated successfully.")
|
| 38 |
+
|
| 39 |
+
# Text retrieval example
|
| 40 |
+
# Number of inputs to display (can be dynamic)
|
| 41 |
+
num_inputs = st.number_input("How many text inputs?", min_value=1, max_value=10, value=3)
|
| 42 |
+
|
| 43 |
+
# List to store user inputs
|
| 44 |
+
input_list = []
|
| 45 |
+
|
| 46 |
+
# Dynamically generate the text input fields
|
| 47 |
+
for i in range(num_inputs):
|
| 48 |
+
user_input = st.text_input(f"Input Text {i+1}")
|
| 49 |
+
input_list.append(user_input)
|
| 50 |
+
|
| 51 |
+
populated_status = ["Populated" if text.strip() else "Empty" for text in input_list]
|
| 52 |
+
if "Populated" in populated_status:
|
| 53 |
+
# Tokenize the text
|
| 54 |
+
tokenizer = get_tokenizer() # load tokenizer
|
| 55 |
+
text_tokens = tokenize(texts=input_list, tokenizer=tokenizer) # tokenize the text
|
| 56 |
+
text_embs = model.encode_text(text_tokens)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
#with torch.no_grad():
|
| 60 |
+
# text_embs = model.encode_text(tokens, proj_contrast=True, normalize=True)
|
| 61 |
+
|
| 62 |
+
st.write("Text embeddings generated successfully.")
|
| 63 |
+
|
| 64 |
+
# Perform similarity check
|
| 65 |
+
similarity = torch.cosine_similarity(image_embs, text_embs)
|
| 66 |
+
st.write("Similarity check completed.")
|
| 67 |
+
st.write(similarity)
|