import gradio as gr import models def train(): return 'https://images.deepai.org/converted-papers/1803.09820/testLoss1.png' def pred(engine): engine = engine-1 pred_truth = models.lstm(engine) return 'https://www.owtrun.com/blog/wp-content/uploads/2023/01/RUL1.2-34-at-161-1024x527.png', f'{pred_truth[0]:.2f} | {pred_truth[1]:.0f}' with gr.Blocks(css="footer {visibility: hidden}", title="Прогнозирование RUL") as demo: gr.Markdown("Выберите модель, набор данных и номер двигателя для прогнозирования оставшегося ресурса оборудования (RUL)") with gr.Tab('Демо'): with gr.Row(): with gr.Column(): model_list_demo = gr.Radio(["LSTM", "VAE"],label='Модель') gr.Radio(["FD001", "FD002", "FD003", "FD004"],label='Набор данных') engine_slider_demo = gr.Slider(1, 100, step=1, label='Двигатель', info='InFo', interactive=True) pred_bttn = gr.Button('Прогноз') with gr.Column(): ill_chart = gr.Image(label='Прогноз') prediction1 = gr.Label(value='ххх | xxx', label='Прогноз | Истина') with gr.Tab('Обучение'): with gr.Row(): with gr.Column(): gr.File(file_types=['.csv'],label='Данные') gr.Radio(["LSTM", "VAE", "XGBoost"],label='Модель') train_bttn = gr.Button(value='Обучить') gr.Slider(1, 100, step=1, label='Двигатель', interactive=True) preed_bttn = gr.Button(value='Прогноз') with gr.Column(): lc_chart = gr.Image(label='График обучения') prediction2 = gr.Label(value='ххх', label='Прогноз') pred_bttn.click(pred, inputs=[engine_slider_demo] , outputs=[ill_chart, prediction1]) train_bttn.click(train, outputs=lc_chart) demo.launch()