ThreatLevelD
commited on
Commit
·
8652e94
1
Parent(s):
9b2f3b7
Refactored main.py
Browse files- gradio_ui.py +148 -42
- main.py +7 -5
gradio_ui.py
CHANGED
|
@@ -1,6 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import yaml
|
| 3 |
import os
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from core.codex_informer import CodexInformer
|
| 6 |
from core.eil_processor import EILProcessor
|
|
@@ -8,35 +11,73 @@ from core.esil_inference import ESILInference
|
|
| 8 |
from core.eris_reasoner import ERISReasoner
|
| 9 |
from core.fec_controller import FECController
|
| 10 |
|
| 11 |
-
#
|
| 12 |
codex_informer = CodexInformer()
|
| 13 |
eil_processor = EILProcessor(codex_informer)
|
| 14 |
esil_formatter = ESILInference(codex_informer)
|
| 15 |
eris_engine = ERISReasoner()
|
| 16 |
fec_controller = FECController()
|
| 17 |
|
| 18 |
-
#
|
|
|
|
| 19 |
config_path = os.path.join("config", "response_strategies.yaml")
|
| 20 |
with open(config_path, 'r', encoding='utf-8') as f:
|
| 21 |
response_strategies = yaml.safe_load(f).get('response_strategies', {})
|
| 22 |
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
try:
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# Step 1: EIL Processing
|
| 28 |
-
eil_result = eil_processor.infer_emotion(
|
| 29 |
-
|
| 30 |
|
| 31 |
# Step 2: ESIL Formatting
|
| 32 |
esil_packet = esil_formatter.infer_esil(eil_result)
|
| 33 |
-
|
| 34 |
|
| 35 |
# Step 3: ERIS Reasoning
|
| 36 |
eris_result = eris_engine.reason_emotion_state(esil_packet)
|
| 37 |
-
|
| 38 |
|
| 39 |
-
# Pull out your primary_emotion_code (case-agnostic)
|
| 40 |
fam_code = (
|
| 41 |
eris_result.get('primary_emotion_code') or
|
| 42 |
eris_result.get('Primary Emotion Code') or
|
|
@@ -45,6 +86,16 @@ def process_input(user_text):
|
|
| 45 |
if not fam_code:
|
| 46 |
raise KeyError("`primary_emotion_code` missing in ERIS result")
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# Lookup response strategy
|
| 49 |
rs = response_strategies.get(fam_code, {})
|
| 50 |
rsm_code = rs.get('rsm_code', 'RSM-UNKNOWN')
|
|
@@ -57,44 +108,99 @@ def process_input(user_text):
|
|
| 57 |
f"{sample_response}"
|
| 58 |
)
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
except Exception as e:
|
| 74 |
-
|
| 75 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
|
|
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
inputs=[user_input],
|
| 94 |
-
outputs=[fusion_prompt_display, empathic_response_display]
|
| 95 |
-
)
|
| 96 |
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
launch_ui()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import yaml
|
| 3 |
import os
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
from googletrans import Translator
|
| 7 |
|
| 8 |
from core.codex_informer import CodexInformer
|
| 9 |
from core.eil_processor import EILProcessor
|
|
|
|
| 11 |
from core.eris_reasoner import ERISReasoner
|
| 12 |
from core.fec_controller import FECController
|
| 13 |
|
| 14 |
+
# 1️⃣ --- SETUP & BRANDING ---
|
| 15 |
codex_informer = CodexInformer()
|
| 16 |
eil_processor = EILProcessor(codex_informer)
|
| 17 |
esil_formatter = ESILInference(codex_informer)
|
| 18 |
eris_engine = ERISReasoner()
|
| 19 |
fec_controller = FECController()
|
| 20 |
|
| 21 |
+
logo_path = "D:\EmpathyEthics\MEC docs\GIT\mec-mvp\assets\Transparent_logo_40.webp" # Update if needed
|
| 22 |
+
|
| 23 |
config_path = os.path.join("config", "response_strategies.yaml")
|
| 24 |
with open(config_path, 'r', encoding='utf-8') as f:
|
| 25 |
response_strategies = yaml.safe_load(f).get('response_strategies', {})
|
| 26 |
|
| 27 |
+
LANGS = {
|
| 28 |
+
"English": "en",
|
| 29 |
+
"Spanish": "es",
|
| 30 |
+
"French": "fr",
|
| 31 |
+
"Chinese (Simplified)": "zh-cn",
|
| 32 |
+
"German": "de"
|
| 33 |
+
}
|
| 34 |
+
DEFAULT_LANG = "English"
|
| 35 |
+
DEFAULT_TONE = "Empathic (Default)"
|
| 36 |
+
TONES = [
|
| 37 |
+
"Empathic (Default)",
|
| 38 |
+
"Direct",
|
| 39 |
+
"Gentle",
|
| 40 |
+
"Encouraging",
|
| 41 |
+
"Reflective"
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
translator = Translator()
|
| 45 |
+
|
| 46 |
+
def translate_text(text, target_lang_code):
|
| 47 |
+
if target_lang_code == "en":
|
| 48 |
+
return text
|
| 49 |
try:
|
| 50 |
+
result = translator.translate(text, dest=target_lang_code)
|
| 51 |
+
return result.text
|
| 52 |
+
except Exception:
|
| 53 |
+
return f"[Translation Error] {text}"
|
| 54 |
+
|
| 55 |
+
# 2️⃣ --- PIPELINE ---
|
| 56 |
+
def process_input(user_text, selected_tone, selected_language):
|
| 57 |
+
trace = []
|
| 58 |
+
try:
|
| 59 |
+
trace.append(f"[DEBUG] Input Text: {user_text!r}")
|
| 60 |
+
trace.append(f"[DEBUG] Selected Tone: {selected_tone}")
|
| 61 |
+
trace.append(f"[DEBUG] Selected Language: {selected_language}")
|
| 62 |
+
|
| 63 |
+
# Optionally translate input to English if not already (for model)
|
| 64 |
+
lang_code = LANGS.get(selected_language, "en")
|
| 65 |
+
user_text_en = translate_text(user_text, "en") if lang_code != "en" else user_text
|
| 66 |
+
if lang_code != "en":
|
| 67 |
+
trace.append(f"[DEBUG] Translated input to English: {user_text_en}")
|
| 68 |
|
| 69 |
# Step 1: EIL Processing
|
| 70 |
+
eil_result = eil_processor.infer_emotion(user_text_en)
|
| 71 |
+
trace.append(f"[DEBUG] EIL Result: {eil_result}")
|
| 72 |
|
| 73 |
# Step 2: ESIL Formatting
|
| 74 |
esil_packet = esil_formatter.infer_esil(eil_result)
|
| 75 |
+
trace.append(f"[DEBUG] ESIL Packet: {esil_packet}")
|
| 76 |
|
| 77 |
# Step 3: ERIS Reasoning
|
| 78 |
eris_result = eris_engine.reason_emotion_state(esil_packet)
|
| 79 |
+
trace.append(f"[DEBUG] ERIS Result: {eris_result}")
|
| 80 |
|
|
|
|
| 81 |
fam_code = (
|
| 82 |
eris_result.get('primary_emotion_code') or
|
| 83 |
eris_result.get('Primary Emotion Code') or
|
|
|
|
| 86 |
if not fam_code:
|
| 87 |
raise KeyError("`primary_emotion_code` missing in ERIS result")
|
| 88 |
|
| 89 |
+
# Pass tone through to Fusion Engine
|
| 90 |
+
final_uesp = {
|
| 91 |
+
'emotion_family': eris_result.get('emotion_family', fam_code),
|
| 92 |
+
'Primary Emotion Code': fam_code,
|
| 93 |
+
'response_tone': selected_tone, # This is new!
|
| 94 |
+
**eris_result
|
| 95 |
+
}
|
| 96 |
+
fusion_prompt = fec_controller.generate_prompt(final_uesp)
|
| 97 |
+
trace.append(f"[DEBUG] Fusion Prompt Generated: {fusion_prompt}")
|
| 98 |
+
|
| 99 |
# Lookup response strategy
|
| 100 |
rs = response_strategies.get(fam_code, {})
|
| 101 |
rsm_code = rs.get('rsm_code', 'RSM-UNKNOWN')
|
|
|
|
| 108 |
f"{sample_response}"
|
| 109 |
)
|
| 110 |
|
| 111 |
+
# Optionally translate output back to user language
|
| 112 |
+
if lang_code != "en":
|
| 113 |
+
fusion_prompt = translate_text(fusion_prompt, lang_code)
|
| 114 |
+
simulated_output = translate_text(simulated_output, lang_code)
|
| 115 |
+
|
| 116 |
+
# 3️⃣ --- EMPATHY REPORT GENERATION ---
|
| 117 |
+
report_contents = (
|
| 118 |
+
f"Empathy Report - MEC MVP\n"
|
| 119 |
+
f"Date: {datetime.now().isoformat(timespec='seconds')}\n"
|
| 120 |
+
f"Input: {user_text}\n"
|
| 121 |
+
f"Tone: {selected_tone}\n"
|
| 122 |
+
f"Language: {selected_language}\n"
|
| 123 |
+
f"\n"
|
| 124 |
+
f"Primary Emotion: {fam_code}\n"
|
| 125 |
+
f"Blend: {eris_result.get('blend')}\n"
|
| 126 |
+
f"Arc: {eris_result.get('arc')}\n"
|
| 127 |
+
f"Resonance: {eris_result.get('resonance')}\n"
|
| 128 |
+
f"\n"
|
| 129 |
+
f"Fusion Prompt:\n{fusion_prompt}\n"
|
| 130 |
+
f"\n"
|
| 131 |
+
f"Simulated Empathic Response:\n{simulated_output}\n"
|
| 132 |
+
)
|
| 133 |
+
report_file = f"/tmp/mec_empathy_report_{datetime.now().strftime('%Y%m%d%H%M%S')}.txt"
|
| 134 |
+
with open(report_file, "w", encoding='utf-8') as f:
|
| 135 |
+
f.write(report_contents)
|
| 136 |
+
|
| 137 |
+
return (
|
| 138 |
+
fusion_prompt,
|
| 139 |
+
simulated_output,
|
| 140 |
+
"\n".join(trace),
|
| 141 |
+
report_file
|
| 142 |
+
)
|
| 143 |
except Exception as e:
|
| 144 |
+
trace.append(f"[ERROR] Exception in process_input: {e}")
|
| 145 |
+
return (
|
| 146 |
+
"[ERROR: Unable to process input]",
|
| 147 |
+
f"An error occurred: {e}",
|
| 148 |
+
"\n".join(trace),
|
| 149 |
+
None
|
| 150 |
+
)
|
| 151 |
|
| 152 |
+
# 4️⃣ --- UI LAYOUT ---
|
| 153 |
+
with gr.Blocks(title="MEC MVP – Empathic UI", theme="soft", css="#logo-img {margin-bottom: -30px;}") as demo:
|
| 154 |
+
# Branding: Logo & Title
|
| 155 |
+
with gr.Row():
|
| 156 |
+
gr.Image(value=logo_path, label="", show_label=False, height=100, elem_id="logo-img")
|
| 157 |
+
gr.Markdown("## Master Emotional Core (MEC) MVP UI\nEmpathy-first AI. Built to protect.")
|
| 158 |
+
|
| 159 |
+
# Guided Onboarding
|
| 160 |
+
gr.Markdown(
|
| 161 |
+
"Welcome to the MEC Empathy MVP! Enter a story, thought, or feeling below and select a tone or language for the response. "
|
| 162 |
+
"You can expand the Emotional Reasoning Trace below to see how the AI made its decision. "
|
| 163 |
+
"Download your empathy report after each run for further review or research."
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
with gr.Row():
|
| 167 |
+
user_input = gr.Textbox(
|
| 168 |
+
label="Enter your message or story:",
|
| 169 |
+
placeholder="Type here... (Long-form, multi-sentence, or single phrase)",
|
| 170 |
+
lines=5,
|
| 171 |
+
info="Try stories, complex feelings, or emotional blends!"
|
| 172 |
+
)
|
| 173 |
|
| 174 |
+
with gr.Row():
|
| 175 |
+
selected_tone = gr.Dropdown(
|
| 176 |
+
choices=TONES,
|
| 177 |
+
value=DEFAULT_TONE,
|
| 178 |
+
label="Select Empathic Response Tone",
|
| 179 |
+
info="Choose how the AI should frame its empathic response."
|
| 180 |
+
)
|
| 181 |
+
selected_language = gr.Dropdown(
|
| 182 |
+
choices=list(LANGS.keys()),
|
| 183 |
+
value=DEFAULT_LANG,
|
| 184 |
+
label="Language",
|
| 185 |
+
info="Choose your preferred language for input/output."
|
| 186 |
+
)
|
| 187 |
|
| 188 |
+
with gr.Row():
|
| 189 |
+
submit_button = gr.Button("Process Input")
|
| 190 |
+
download_report_btn = gr.File(label="Download Empathy Report", visible=True)
|
| 191 |
|
| 192 |
+
with gr.Row():
|
| 193 |
+
fusion_prompt_display = gr.Textbox(label="Fusion Prompt", lines=5, interactive=False)
|
| 194 |
+
empathic_response_display = gr.Textbox(label="Simulated Empathic Response", lines=7, interactive=False)
|
| 195 |
|
| 196 |
+
with gr.Accordion("Show Emotional Reasoning Trace (Technical)", open=False):
|
| 197 |
+
reasoning_trace = gr.Textbox(label="Debug/Trace", lines=15, interactive=False)
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
+
# Submit logic
|
| 200 |
+
submit_button.click(
|
| 201 |
+
fn=process_input,
|
| 202 |
+
inputs=[user_input, selected_tone, selected_language],
|
| 203 |
+
outputs=[fusion_prompt_display, empathic_response_display, reasoning_trace, download_report_btn]
|
| 204 |
+
)
|
| 205 |
|
| 206 |
+
demo.launch()
|
|
|
main.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
from core.eil_processor import EILProcessor
|
| 2 |
from core.esil_inference import ESILInference
|
| 3 |
from core.eris_reasoner import ERISReasoner
|
|
@@ -13,15 +14,16 @@ def run_pipeline(user_input_text, force_hei=False):
|
|
| 13 |
with open('config/response_strategies.yaml', 'r', encoding='utf-8') as f:
|
| 14 |
response_strategies = yaml.safe_load(f)['response_strategies']
|
| 15 |
|
| 16 |
-
# 1️⃣ EIL Processor (handles both normalization and emotion processing)
|
| 17 |
-
|
|
|
|
| 18 |
|
| 19 |
# Run emotion inference
|
| 20 |
eil_packet = eil.infer_emotion(user_input_text)
|
| 21 |
print(f"[Main] EIL Packet Output: {eil_packet}")
|
| 22 |
|
| 23 |
# 2️⃣ ESIL Inference
|
| 24 |
-
esil = ESILInference()
|
| 25 |
esil_packet = esil.infer_esil(eil_packet)
|
| 26 |
|
| 27 |
# 3️⃣ Forced HEI Mode: Ensure it forces the low confidence path if True
|
|
@@ -45,7 +47,7 @@ def run_pipeline(user_input_text, force_hei=False):
|
|
| 45 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
| 46 |
|
| 47 |
# 6️⃣ Simulated Empathic Response
|
| 48 |
-
fam_code = final_uesp
|
| 49 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
| 50 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
| 51 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|
|
@@ -76,7 +78,7 @@ def run_pipeline(user_input_text, force_hei=False):
|
|
| 76 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
| 77 |
|
| 78 |
# 8️⃣ Simulated Empathic Response
|
| 79 |
-
fam_code = final_uesp
|
| 80 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
| 81 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
| 82 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|
|
|
|
| 1 |
+
from core.codex_informer import CodexInformer
|
| 2 |
from core.eil_processor import EILProcessor
|
| 3 |
from core.esil_inference import ESILInference
|
| 4 |
from core.eris_reasoner import ERISReasoner
|
|
|
|
| 14 |
with open('config/response_strategies.yaml', 'r', encoding='utf-8') as f:
|
| 15 |
response_strategies = yaml.safe_load(f)['response_strategies']
|
| 16 |
|
| 17 |
+
# 1️⃣ CodexInformer and EIL Processor (handles both normalization and emotion processing)
|
| 18 |
+
codex_informer = CodexInformer()
|
| 19 |
+
eil = EILProcessor(codex_informer)
|
| 20 |
|
| 21 |
# Run emotion inference
|
| 22 |
eil_packet = eil.infer_emotion(user_input_text)
|
| 23 |
print(f"[Main] EIL Packet Output: {eil_packet}")
|
| 24 |
|
| 25 |
# 2️⃣ ESIL Inference
|
| 26 |
+
esil = ESILInference(codex_informer)
|
| 27 |
esil_packet = esil.infer_esil(eil_packet)
|
| 28 |
|
| 29 |
# 3️⃣ Forced HEI Mode: Ensure it forces the low confidence path if True
|
|
|
|
| 47 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
| 48 |
|
| 49 |
# 6️⃣ Simulated Empathic Response
|
| 50 |
+
fam_code = final_uesp.get('primary_emotion_code') or final_uesp.get('Primary Emotion Code')
|
| 51 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
| 52 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
| 53 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|
|
|
|
| 78 |
print(f"[Main] Final Fusion Prompt:\n{fusion_prompt}")
|
| 79 |
|
| 80 |
# 8️⃣ Simulated Empathic Response
|
| 81 |
+
fam_code = final_uesp.get('primary_emotion_code') or final_uesp.get('Primary Emotion Code')
|
| 82 |
rsm_code = response_strategies.get(fam_code, {}).get('rsm_code', 'RSM-UNKNOWN')
|
| 83 |
strategy_name = response_strategies.get(fam_code, {}).get('strategy', 'Strategy not defined')
|
| 84 |
sample_response = response_strategies.get(fam_code, {}).get('sample_response', 'No response available')
|