Spaces:
Sleeping
Sleeping
Update evaluation_queue.py
Browse files- evaluation_queue.py +17 -799
evaluation_queue.py
CHANGED
|
@@ -1,802 +1,8 @@
|
|
| 1 |
"""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
This module handles the evaluation queue, CPU-only processing,
|
| 5 |
-
and enforces daily submission limits for users.
|
| 6 |
"""
|
| 7 |
|
| 8 |
-
import os
|
| 9 |
-
import json
|
| 10 |
-
import time
|
| 11 |
-
import threading
|
| 12 |
-
import queue as queue_module
|
| 13 |
-
from datetime import datetime, timedelta
|
| 14 |
-
import gradio as gr
|
| 15 |
-
from huggingface_hub import HfApi, hf_hub_download, snapshot_download, model_info
|
| 16 |
-
from datasets import load_dataset
|
| 17 |
-
import torch
|
| 18 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 19 |
-
import sqlite3
|
| 20 |
-
|
| 21 |
-
class EvaluationQueue:
|
| 22 |
-
"""Manages the evaluation queue for model benchmarking."""
|
| 23 |
-
|
| 24 |
-
def __init__(self, db_manager, auth_manager):
|
| 25 |
-
"""Initialize the evaluation queue manager.
|
| 26 |
-
|
| 27 |
-
Args:
|
| 28 |
-
db_manager: Database manager instance
|
| 29 |
-
auth_manager: Authentication manager instance
|
| 30 |
-
"""
|
| 31 |
-
self.db_manager = db_manager
|
| 32 |
-
self.auth_manager = auth_manager
|
| 33 |
-
self.hf_api = HfApi()
|
| 34 |
-
self.queue = queue_module.Queue()
|
| 35 |
-
self.is_processing = False
|
| 36 |
-
self.worker_thread = None
|
| 37 |
-
self.model_tags = ["Merge", "Agent", "Reasoning", "Coding", "General", "Specialized", "Instruction", "Chat"]
|
| 38 |
-
self.current_evaluation = None
|
| 39 |
-
self.progress = 0
|
| 40 |
-
self.progress_lock = threading.Lock()
|
| 41 |
-
# Memory limit for models in GB (leave 2GB for system)
|
| 42 |
-
self.memory_limit_gb = 14.0
|
| 43 |
-
|
| 44 |
-
def start_worker(self):
|
| 45 |
-
"""Start the worker thread for processing the evaluation queue."""
|
| 46 |
-
if self.worker_thread is None or not self.worker_thread.is_alive():
|
| 47 |
-
self.is_processing = True
|
| 48 |
-
self.worker_thread = threading.Thread(target=self._process_queue)
|
| 49 |
-
self.worker_thread.daemon = True
|
| 50 |
-
self.worker_thread.start()
|
| 51 |
-
|
| 52 |
-
def stop_worker(self):
|
| 53 |
-
"""Stop the worker thread."""
|
| 54 |
-
self.is_processing = False
|
| 55 |
-
if self.worker_thread and self.worker_thread.is_alive():
|
| 56 |
-
self.worker_thread.join(timeout=1.0)
|
| 57 |
-
|
| 58 |
-
def check_model_size(self, model_id):
|
| 59 |
-
"""Check if a model will fit within RAM limitations.
|
| 60 |
-
|
| 61 |
-
Args:
|
| 62 |
-
model_id: HuggingFace model ID
|
| 63 |
-
|
| 64 |
-
Returns:
|
| 65 |
-
tuple: (will_fit, message)
|
| 66 |
-
"""
|
| 67 |
-
try:
|
| 68 |
-
# Query model info from the HuggingFace API
|
| 69 |
-
model_info_obj = self.hf_api.model_info(model_id)
|
| 70 |
-
|
| 71 |
-
# Check if model size information is available
|
| 72 |
-
if hasattr(model_info_obj, 'safetensors') and model_info_obj.safetensors:
|
| 73 |
-
# Calculate size in GB (divided by 1024^3)
|
| 74 |
-
total_size_gb = sum(
|
| 75 |
-
file.size for file in model_info_obj.safetensors.values()
|
| 76 |
-
) / (1024 * 1024 * 1024)
|
| 77 |
-
elif hasattr(model_info_obj, 'siblings'):
|
| 78 |
-
# Legacy method - calculate from file siblings
|
| 79 |
-
total_size_gb = sum(
|
| 80 |
-
sibling.size for sibling in model_info_obj.siblings
|
| 81 |
-
if sibling.rfilename.endswith(('.bin', '.safetensors', '.pt'))
|
| 82 |
-
) / (1024 * 1024 * 1024)
|
| 83 |
-
else:
|
| 84 |
-
# Can't determine size
|
| 85 |
-
return False, "Unable to determine model size. Please ensure model is under 14GB."
|
| 86 |
-
|
| 87 |
-
# Account for memory overhead (tokenizer, processing, etc.)
|
| 88 |
-
estimated_ram_needed = total_size_gb * 1.3 # 30% overhead
|
| 89 |
-
|
| 90 |
-
# Check against limit
|
| 91 |
-
if estimated_ram_needed > self.memory_limit_gb:
|
| 92 |
-
return False, f"Model is too large (approximately {total_size_gb:.1f}GB, needs {estimated_ram_needed:.1f}GB RAM). Maximum allowed is {self.memory_limit_gb}GB."
|
| 93 |
-
|
| 94 |
-
return True, f"Model size check passed ({total_size_gb:.1f}GB, estimated {estimated_ram_needed:.1f}GB RAM usage)"
|
| 95 |
-
|
| 96 |
-
except Exception as e:
|
| 97 |
-
print(f"Model size check error: {e}")
|
| 98 |
-
# If we can't check, be cautious
|
| 99 |
-
return False, f"Error checking model size: {str(e)}. Please ensure your model is under {self.memory_limit_gb}GB."
|
| 100 |
-
|
| 101 |
-
def _process_queue(self):
|
| 102 |
-
"""Process the evaluation queue in a separate thread."""
|
| 103 |
-
while self.is_processing:
|
| 104 |
-
try:
|
| 105 |
-
# Get the next evaluation from the database
|
| 106 |
-
pending_evals = self.db_manager.get_evaluation_results(status="pending")
|
| 107 |
-
|
| 108 |
-
if pending_evals:
|
| 109 |
-
# Sort by priority and added_at
|
| 110 |
-
next_eval = pending_evals[0]
|
| 111 |
-
|
| 112 |
-
# Update status to running
|
| 113 |
-
self.db_manager.update_evaluation_status(next_eval['id'], 'running')
|
| 114 |
-
|
| 115 |
-
# Set current evaluation and reset progress
|
| 116 |
-
with self.progress_lock:
|
| 117 |
-
self.current_evaluation = next_eval
|
| 118 |
-
self.progress = 0
|
| 119 |
-
|
| 120 |
-
try:
|
| 121 |
-
# Get model and benchmark details
|
| 122 |
-
model_info = self.db_manager.get_model(next_eval['model_id'])
|
| 123 |
-
benchmark_info = self.db_manager.get_benchmark(next_eval['benchmark_id'])
|
| 124 |
-
|
| 125 |
-
if model_info and benchmark_info:
|
| 126 |
-
# Check if model will fit in memory
|
| 127 |
-
will_fit, message = self.check_model_size(model_info['hf_model_id'])
|
| 128 |
-
|
| 129 |
-
if not will_fit:
|
| 130 |
-
raise Exception(f"Model too large for evaluation: {message}")
|
| 131 |
-
|
| 132 |
-
# Run the evaluation
|
| 133 |
-
results = self._run_evaluation(
|
| 134 |
-
model_info['hf_model_id'],
|
| 135 |
-
benchmark_info['dataset_id']
|
| 136 |
-
)
|
| 137 |
-
|
| 138 |
-
# Calculate overall score
|
| 139 |
-
score = self._calculate_overall_score(results)
|
| 140 |
-
|
| 141 |
-
# Update status to completed with results
|
| 142 |
-
self.db_manager.update_evaluation_status(
|
| 143 |
-
next_eval['id'],
|
| 144 |
-
'completed',
|
| 145 |
-
results=results,
|
| 146 |
-
score=score
|
| 147 |
-
)
|
| 148 |
-
else:
|
| 149 |
-
raise Exception("Model or benchmark not found")
|
| 150 |
-
except Exception as e:
|
| 151 |
-
print(f"Evaluation error: {e}")
|
| 152 |
-
# Update status to failed with error message
|
| 153 |
-
error_results = {"error": str(e)}
|
| 154 |
-
self.db_manager.update_evaluation_status(
|
| 155 |
-
next_eval['id'],
|
| 156 |
-
'failed',
|
| 157 |
-
results=error_results
|
| 158 |
-
)
|
| 159 |
-
|
| 160 |
-
# Clear current evaluation
|
| 161 |
-
with self.progress_lock:
|
| 162 |
-
self.current_evaluation = None
|
| 163 |
-
self.progress = 0
|
| 164 |
-
else:
|
| 165 |
-
# No evaluations in queue, sleep for a bit
|
| 166 |
-
time.sleep(5)
|
| 167 |
-
except Exception as e:
|
| 168 |
-
print(f"Queue processing error: {e}")
|
| 169 |
-
time.sleep(5)
|
| 170 |
-
|
| 171 |
-
def _run_evaluation(self, model_id, dataset_id):
|
| 172 |
-
"""Run an evaluation for a model on a benchmark.
|
| 173 |
-
|
| 174 |
-
Args:
|
| 175 |
-
model_id: HuggingFace model ID
|
| 176 |
-
dataset_id: HuggingFace dataset ID (with optional config)
|
| 177 |
-
|
| 178 |
-
Returns:
|
| 179 |
-
dict: Evaluation results
|
| 180 |
-
"""
|
| 181 |
-
# Update progress
|
| 182 |
-
with self.progress_lock:
|
| 183 |
-
self.progress = 5 # Starting evaluation
|
| 184 |
-
|
| 185 |
-
# Parse dataset ID and config
|
| 186 |
-
if ":" in dataset_id:
|
| 187 |
-
dataset_id, config = dataset_id.split(":", 1)
|
| 188 |
-
else:
|
| 189 |
-
config = None
|
| 190 |
-
|
| 191 |
-
# Update progress
|
| 192 |
-
with self.progress_lock:
|
| 193 |
-
self.progress = 10 # Loading dataset
|
| 194 |
-
|
| 195 |
-
# Load the dataset
|
| 196 |
-
try:
|
| 197 |
-
if config:
|
| 198 |
-
dataset = load_dataset(dataset_id, config, split="test")
|
| 199 |
-
else:
|
| 200 |
-
dataset = load_dataset(dataset_id, split="test")
|
| 201 |
-
except Exception as e:
|
| 202 |
-
return {"error": f"Failed to load dataset: {str(e)}"}
|
| 203 |
-
|
| 204 |
-
# Update progress
|
| 205 |
-
with self.progress_lock:
|
| 206 |
-
self.progress = 20 # Loading model
|
| 207 |
-
|
| 208 |
-
try:
|
| 209 |
-
# Load the model with memory optimization settings
|
| 210 |
-
device = "cpu"
|
| 211 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 212 |
-
model_id,
|
| 213 |
-
device_map=device,
|
| 214 |
-
torch_dtype=torch.float32, # Use float32 for CPU
|
| 215 |
-
low_cpu_mem_usage=True, # Enable memory optimization
|
| 216 |
-
offload_folder="offload", # Enable offloading if needed
|
| 217 |
-
offload_state_dict=True, # Offload state dict for memory saving
|
| 218 |
-
max_memory={0: f"{self.memory_limit_gb}GB"} # Limit memory usage
|
| 219 |
-
)
|
| 220 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 221 |
-
except Exception as e:
|
| 222 |
-
print(f"Model loading error: {e}")
|
| 223 |
-
return {"error": f"Failed to load model: {str(e)}"}
|
| 224 |
-
|
| 225 |
-
# Update progress
|
| 226 |
-
with self.progress_lock:
|
| 227 |
-
self.progress = 30 # Determining task type
|
| 228 |
-
|
| 229 |
-
# Determine task type based on dataset features
|
| 230 |
-
task_type = self._determine_task_type(dataset)
|
| 231 |
-
|
| 232 |
-
# Update progress
|
| 233 |
-
with self.progress_lock:
|
| 234 |
-
self.progress = 40 # Starting evaluation
|
| 235 |
-
|
| 236 |
-
try:
|
| 237 |
-
# Run appropriate evaluation based on task type
|
| 238 |
-
if task_type == "text-generation":
|
| 239 |
-
results = self._evaluate_text_generation(model, tokenizer, dataset)
|
| 240 |
-
elif task_type == "question-answering":
|
| 241 |
-
results = self._evaluate_question_answering(model, tokenizer, dataset)
|
| 242 |
-
elif task_type == "classification":
|
| 243 |
-
results = self._evaluate_classification(model, tokenizer, dataset)
|
| 244 |
-
elif task_type == "code-generation":
|
| 245 |
-
results = self._evaluate_code_generation(model, tokenizer, dataset)
|
| 246 |
-
else:
|
| 247 |
-
# Default to general evaluation
|
| 248 |
-
results = self._evaluate_general(model, tokenizer, dataset)
|
| 249 |
-
except Exception as e:
|
| 250 |
-
print(f"Evaluation task error: {e}")
|
| 251 |
-
return {"error": f"Evaluation failed: {str(e)}"}
|
| 252 |
-
|
| 253 |
-
# Update progress
|
| 254 |
-
with self.progress_lock:
|
| 255 |
-
self.progress = 95 # Cleaning up
|
| 256 |
-
|
| 257 |
-
# Clean up to free memory
|
| 258 |
-
del model
|
| 259 |
-
del tokenizer
|
| 260 |
-
if torch.cuda.is_available():
|
| 261 |
-
torch.cuda.empty_cache()
|
| 262 |
-
|
| 263 |
-
# Update progress
|
| 264 |
-
with self.progress_lock:
|
| 265 |
-
self.progress = 100 # Completed
|
| 266 |
-
|
| 267 |
-
return results
|
| 268 |
-
|
| 269 |
-
def get_current_progress(self):
|
| 270 |
-
"""Get the current evaluation progress.
|
| 271 |
-
|
| 272 |
-
Returns:
|
| 273 |
-
tuple: (current_evaluation, progress_percentage)
|
| 274 |
-
"""
|
| 275 |
-
with self.progress_lock:
|
| 276 |
-
return self.current_evaluation, self.progress
|
| 277 |
-
|
| 278 |
-
def _determine_task_type(self, dataset):
|
| 279 |
-
"""Determine the task type based on dataset features.
|
| 280 |
-
|
| 281 |
-
Args:
|
| 282 |
-
dataset: HuggingFace dataset
|
| 283 |
-
|
| 284 |
-
Returns:
|
| 285 |
-
str: Task type
|
| 286 |
-
"""
|
| 287 |
-
features = dataset.features
|
| 288 |
-
|
| 289 |
-
# Check for common feature patterns
|
| 290 |
-
if "question" in features and "answer" in features:
|
| 291 |
-
return "question-answering"
|
| 292 |
-
elif "code" in features or "solution" in features:
|
| 293 |
-
return "code-generation"
|
| 294 |
-
elif "label" in features or "class" in features:
|
| 295 |
-
return "classification"
|
| 296 |
-
elif "input" in features and "output" in features:
|
| 297 |
-
return "text-generation"
|
| 298 |
-
else:
|
| 299 |
-
return "general"
|
| 300 |
-
|
| 301 |
-
def _evaluate_text_generation(self, model, tokenizer, dataset):
|
| 302 |
-
"""Evaluate a model on text generation tasks.
|
| 303 |
-
|
| 304 |
-
Args:
|
| 305 |
-
model: HuggingFace model
|
| 306 |
-
tokenizer: HuggingFace tokenizer
|
| 307 |
-
dataset: HuggingFace dataset
|
| 308 |
-
|
| 309 |
-
Returns:
|
| 310 |
-
dict: Evaluation results
|
| 311 |
-
"""
|
| 312 |
-
# Set up generation pipeline
|
| 313 |
-
generator = pipeline(
|
| 314 |
-
"text-generation",
|
| 315 |
-
model=model,
|
| 316 |
-
tokenizer=tokenizer,
|
| 317 |
-
device="cpu"
|
| 318 |
-
)
|
| 319 |
-
|
| 320 |
-
# Sample a subset for evaluation (to keep runtime reasonable)
|
| 321 |
-
if len(dataset) > 100:
|
| 322 |
-
dataset = dataset.select(range(100))
|
| 323 |
-
|
| 324 |
-
# Track metrics
|
| 325 |
-
correct = 0
|
| 326 |
-
total = 0
|
| 327 |
-
generated_texts = []
|
| 328 |
-
|
| 329 |
-
# Process each example
|
| 330 |
-
for i, example in enumerate(dataset):
|
| 331 |
-
# Update progress based on completion percentage
|
| 332 |
-
with self.progress_lock:
|
| 333 |
-
self.progress = 40 + int((i / len(dataset)) * 50)
|
| 334 |
-
|
| 335 |
-
input_text = example.get("input", example.get("prompt", ""))
|
| 336 |
-
expected_output = example.get("output", example.get("target", ""))
|
| 337 |
-
|
| 338 |
-
if not input_text or not expected_output:
|
| 339 |
-
continue
|
| 340 |
-
|
| 341 |
-
# Generate text
|
| 342 |
-
generated = generator(
|
| 343 |
-
input_text,
|
| 344 |
-
max_length=100,
|
| 345 |
-
num_return_sequences=1
|
| 346 |
-
)
|
| 347 |
-
|
| 348 |
-
generated_text = generated[0]["generated_text"]
|
| 349 |
-
generated_texts.append(generated_text)
|
| 350 |
-
|
| 351 |
-
# Simple exact match check
|
| 352 |
-
if expected_output.strip() in generated_text:
|
| 353 |
-
correct += 1
|
| 354 |
-
|
| 355 |
-
total += 1
|
| 356 |
-
|
| 357 |
-
# Calculate metrics
|
| 358 |
-
accuracy = correct / total if total > 0 else 0
|
| 359 |
-
|
| 360 |
-
return {
|
| 361 |
-
"accuracy": accuracy,
|
| 362 |
-
"samples_evaluated": total,
|
| 363 |
-
"generated_samples": generated_texts[:5] # Include a few samples
|
| 364 |
-
}
|
| 365 |
-
|
| 366 |
-
def _evaluate_question_answering(self, model, tokenizer, dataset):
|
| 367 |
-
"""Evaluate a model on question answering tasks.
|
| 368 |
-
|
| 369 |
-
Args:
|
| 370 |
-
model: HuggingFace model
|
| 371 |
-
tokenizer: HuggingFace tokenizer
|
| 372 |
-
dataset: HuggingFace dataset
|
| 373 |
-
|
| 374 |
-
Returns:
|
| 375 |
-
dict: Evaluation results
|
| 376 |
-
"""
|
| 377 |
-
# Set up QA pipeline
|
| 378 |
-
qa_pipeline = pipeline(
|
| 379 |
-
"question-answering",
|
| 380 |
-
model=model,
|
| 381 |
-
tokenizer=tokenizer,
|
| 382 |
-
device="cpu"
|
| 383 |
-
)
|
| 384 |
-
|
| 385 |
-
# Sample a subset for evaluation
|
| 386 |
-
if len(dataset) > 100:
|
| 387 |
-
dataset = dataset.select(range(100))
|
| 388 |
-
|
| 389 |
-
# Track metrics
|
| 390 |
-
exact_matches = 0
|
| 391 |
-
f1_scores = []
|
| 392 |
-
total = 0
|
| 393 |
-
|
| 394 |
-
# Process each example
|
| 395 |
-
for i, example in enumerate(dataset):
|
| 396 |
-
# Update progress based on completion percentage
|
| 397 |
-
with self.progress_lock:
|
| 398 |
-
self.progress = 40 + int((i / len(dataset)) * 50)
|
| 399 |
-
|
| 400 |
-
question = example.get("question", "")
|
| 401 |
-
context = example.get("context", "")
|
| 402 |
-
answer = example.get("answer", "")
|
| 403 |
-
|
| 404 |
-
if not question or not answer:
|
| 405 |
-
continue
|
| 406 |
-
|
| 407 |
-
# Get model prediction
|
| 408 |
-
if context:
|
| 409 |
-
result = qa_pipeline(question=question, context=context)
|
| 410 |
-
else:
|
| 411 |
-
# If no context provided, use the question as context
|
| 412 |
-
result = qa_pipeline(question=question, context=question)
|
| 413 |
-
|
| 414 |
-
predicted_answer = result["answer"]
|
| 415 |
-
|
| 416 |
-
# Calculate exact match
|
| 417 |
-
if predicted_answer.strip() == answer.strip():
|
| 418 |
-
exact_matches += 1
|
| 419 |
-
|
| 420 |
-
# Calculate F1 score
|
| 421 |
-
f1 = self._calculate_f1(answer, predicted_answer)
|
| 422 |
-
f1_scores.append(f1)
|
| 423 |
-
|
| 424 |
-
total += 1
|
| 425 |
-
|
| 426 |
-
# Calculate metrics
|
| 427 |
-
exact_match_accuracy = exact_matches / total if total > 0 else 0
|
| 428 |
-
avg_f1 = sum(f1_scores) / len(f1_scores) if f1_scores else 0
|
| 429 |
-
|
| 430 |
-
return {
|
| 431 |
-
"exact_match": exact_match_accuracy,
|
| 432 |
-
"f1": avg_f1,
|
| 433 |
-
"samples_evaluated": total
|
| 434 |
-
}
|
| 435 |
-
|
| 436 |
-
def _evaluate_classification(self, model, tokenizer, dataset):
|
| 437 |
-
"""Evaluate a model on classification tasks.
|
| 438 |
-
|
| 439 |
-
Args:
|
| 440 |
-
model: HuggingFace model
|
| 441 |
-
tokenizer: HuggingFace tokenizer
|
| 442 |
-
dataset: HuggingFace dataset
|
| 443 |
-
|
| 444 |
-
Returns:
|
| 445 |
-
dict: Evaluation results
|
| 446 |
-
"""
|
| 447 |
-
# Set up classification pipeline
|
| 448 |
-
classifier = pipeline(
|
| 449 |
-
"text-classification",
|
| 450 |
-
model=model,
|
| 451 |
-
tokenizer=tokenizer,
|
| 452 |
-
device="cpu"
|
| 453 |
-
)
|
| 454 |
-
|
| 455 |
-
# Sample a subset for evaluation
|
| 456 |
-
if len(dataset) > 100:
|
| 457 |
-
dataset = dataset.select(range(100))
|
| 458 |
-
|
| 459 |
-
# Track metrics
|
| 460 |
-
correct = 0
|
| 461 |
-
total = 0
|
| 462 |
-
|
| 463 |
-
# Process each example
|
| 464 |
-
for i, example in enumerate(dataset):
|
| 465 |
-
# Update progress based on completion percentage
|
| 466 |
-
with self.progress_lock:
|
| 467 |
-
self.progress = 40 + int((i / len(dataset)) * 50)
|
| 468 |
-
|
| 469 |
-
text = example.get("text", example.get("sentence", ""))
|
| 470 |
-
label = str(example.get("label", example.get("class", "")))
|
| 471 |
-
|
| 472 |
-
if not text or not label:
|
| 473 |
-
continue
|
| 474 |
-
|
| 475 |
-
# Get model prediction
|
| 476 |
-
result = classifier(text)
|
| 477 |
-
predicted_label = result[0]["label"]
|
| 478 |
-
|
| 479 |
-
# Check if correct
|
| 480 |
-
if str(predicted_label) == label:
|
| 481 |
-
correct += 1
|
| 482 |
-
|
| 483 |
-
total += 1
|
| 484 |
-
|
| 485 |
-
# Calculate metrics
|
| 486 |
-
accuracy = correct / total if total > 0 else 0
|
| 487 |
-
|
| 488 |
-
return {
|
| 489 |
-
"accuracy": accuracy,
|
| 490 |
-
"samples_evaluated": total
|
| 491 |
-
}
|
| 492 |
-
|
| 493 |
-
def _evaluate_code_generation(self, model, tokenizer, dataset):
|
| 494 |
-
"""Evaluate a model on code generation tasks.
|
| 495 |
-
|
| 496 |
-
Args:
|
| 497 |
-
model: HuggingFace model
|
| 498 |
-
tokenizer: HuggingFace tokenizer
|
| 499 |
-
dataset: HuggingFace dataset
|
| 500 |
-
|
| 501 |
-
Returns:
|
| 502 |
-
dict: Evaluation results
|
| 503 |
-
"""
|
| 504 |
-
# Set up generation pipeline
|
| 505 |
-
generator = pipeline(
|
| 506 |
-
"text-generation",
|
| 507 |
-
model=model,
|
| 508 |
-
tokenizer=tokenizer,
|
| 509 |
-
device="cpu"
|
| 510 |
-
)
|
| 511 |
-
|
| 512 |
-
# Sample a subset for evaluation
|
| 513 |
-
if len(dataset) > 50: # Smaller sample for code tasks
|
| 514 |
-
dataset = dataset.select(range(50))
|
| 515 |
-
|
| 516 |
-
# Track metrics
|
| 517 |
-
exact_matches = 0
|
| 518 |
-
functional_matches = 0
|
| 519 |
-
total = 0
|
| 520 |
-
|
| 521 |
-
# Process each example
|
| 522 |
-
for i, example in enumerate(dataset):
|
| 523 |
-
# Update progress based on completion percentage
|
| 524 |
-
with self.progress_lock:
|
| 525 |
-
self.progress = 40 + int((i / len(dataset)) * 50)
|
| 526 |
-
|
| 527 |
-
prompt = example.get("prompt", example.get("input", ""))
|
| 528 |
-
solution = example.get("solution", example.get("output", ""))
|
| 529 |
-
|
| 530 |
-
if not prompt or not solution:
|
| 531 |
-
continue
|
| 532 |
-
|
| 533 |
-
# Generate code
|
| 534 |
-
generated = generator(
|
| 535 |
-
prompt,
|
| 536 |
-
max_length=200,
|
| 537 |
-
num_return_sequences=1
|
| 538 |
-
)
|
| 539 |
-
|
| 540 |
-
generated_code = generated[0]["generated_text"]
|
| 541 |
-
|
| 542 |
-
# Extract code from generated text (remove prompt)
|
| 543 |
-
if prompt in generated_code:
|
| 544 |
-
generated_code = generated_code[len(prompt):].strip()
|
| 545 |
-
|
| 546 |
-
# Check exact match
|
| 547 |
-
if generated_code.strip() == solution.strip():
|
| 548 |
-
exact_matches += 1
|
| 549 |
-
functional_matches += 1
|
| 550 |
-
else:
|
| 551 |
-
# We would ideally check functional correctness here
|
| 552 |
-
# but that requires executing code which is complex and potentially unsafe
|
| 553 |
-
# For now, we'll use a simple heuristic
|
| 554 |
-
if len(generated_code) > 0 and any(keyword in generated_code for keyword in ["def ", "function", "return", "class"]):
|
| 555 |
-
functional_matches += 0.5 # Partial credit
|
| 556 |
-
|
| 557 |
-
total += 1
|
| 558 |
-
|
| 559 |
-
# Calculate metrics
|
| 560 |
-
exact_match_rate = exact_matches / total if total > 0 else 0
|
| 561 |
-
functional_correctness = functional_matches / total if total > 0 else 0
|
| 562 |
-
|
| 563 |
-
return {
|
| 564 |
-
"exact_match": exact_match_rate,
|
| 565 |
-
"functional_correctness": functional_correctness,
|
| 566 |
-
"samples_evaluated": total
|
| 567 |
-
}
|
| 568 |
-
|
| 569 |
-
def _evaluate_general(self, model, tokenizer, dataset):
|
| 570 |
-
"""General evaluation for any dataset type.
|
| 571 |
-
|
| 572 |
-
Args:
|
| 573 |
-
model: HuggingFace model
|
| 574 |
-
tokenizer: HuggingFace tokenizer
|
| 575 |
-
dataset: HuggingFace dataset
|
| 576 |
-
|
| 577 |
-
Returns:
|
| 578 |
-
dict: Evaluation results
|
| 579 |
-
"""
|
| 580 |
-
# Set up generation pipeline
|
| 581 |
-
generator = pipeline(
|
| 582 |
-
"text-generation",
|
| 583 |
-
model=model,
|
| 584 |
-
tokenizer=tokenizer,
|
| 585 |
-
device="cpu"
|
| 586 |
-
)
|
| 587 |
-
|
| 588 |
-
# Sample a subset for evaluation
|
| 589 |
-
if len(dataset) > 50:
|
| 590 |
-
dataset = dataset.select(range(50))
|
| 591 |
-
|
| 592 |
-
# Find input and output fields
|
| 593 |
-
features = dataset.features
|
| 594 |
-
input_field = None
|
| 595 |
-
output_field = None
|
| 596 |
-
|
| 597 |
-
for field in features:
|
| 598 |
-
if field.lower() in ["input", "prompt", "question", "text"]:
|
| 599 |
-
input_field = field
|
| 600 |
-
elif field.lower() in ["output", "target", "answer", "response"]:
|
| 601 |
-
output_field = field
|
| 602 |
-
|
| 603 |
-
if not input_field:
|
| 604 |
-
# Just use the first string field as input
|
| 605 |
-
for field in features:
|
| 606 |
-
if isinstance(features[field], (str, list)):
|
| 607 |
-
input_field = field
|
| 608 |
-
break
|
| 609 |
-
|
| 610 |
-
# Track metrics
|
| 611 |
-
total = 0
|
| 612 |
-
generated_texts = []
|
| 613 |
-
|
| 614 |
-
# Process each example
|
| 615 |
-
for i, example in enumerate(dataset):
|
| 616 |
-
# Update progress based on completion percentage
|
| 617 |
-
with self.progress_lock:
|
| 618 |
-
self.progress = 40 + int((i / len(dataset)) * 50)
|
| 619 |
-
|
| 620 |
-
if input_field and input_field in example:
|
| 621 |
-
input_text = str(example[input_field])
|
| 622 |
-
|
| 623 |
-
# Generate text
|
| 624 |
-
generated = generator(
|
| 625 |
-
input_text,
|
| 626 |
-
max_length=100,
|
| 627 |
-
num_return_sequences=1
|
| 628 |
-
)
|
| 629 |
-
|
| 630 |
-
generated_text = generated[0]["generated_text"]
|
| 631 |
-
generated_texts.append({
|
| 632 |
-
"input": input_text,
|
| 633 |
-
"output": generated_text,
|
| 634 |
-
"expected": str(example[output_field]) if output_field and output_field in example else "N/A"
|
| 635 |
-
})
|
| 636 |
-
|
| 637 |
-
total += 1
|
| 638 |
-
|
| 639 |
-
return {
|
| 640 |
-
"samples_evaluated": total,
|
| 641 |
-
"generated_samples": generated_texts[:5] # Include a few samples
|
| 642 |
-
}
|
| 643 |
-
|
| 644 |
-
def _calculate_f1(self, answer, prediction):
|
| 645 |
-
"""Calculate F1 score between answer and prediction.
|
| 646 |
-
|
| 647 |
-
Args:
|
| 648 |
-
answer: Ground truth answer
|
| 649 |
-
prediction: Model prediction
|
| 650 |
-
|
| 651 |
-
Returns:
|
| 652 |
-
float: F1 score
|
| 653 |
-
"""
|
| 654 |
-
# Tokenize
|
| 655 |
-
answer_tokens = answer.lower().split()
|
| 656 |
-
prediction_tokens = prediction.lower().split()
|
| 657 |
-
|
| 658 |
-
# Calculate precision and recall
|
| 659 |
-
common_tokens = set(answer_tokens) & set(prediction_tokens)
|
| 660 |
-
|
| 661 |
-
if not common_tokens:
|
| 662 |
-
return 0.0
|
| 663 |
-
|
| 664 |
-
precision = len(common_tokens) / len(prediction_tokens)
|
| 665 |
-
recall = len(common_tokens) / len(answer_tokens)
|
| 666 |
-
|
| 667 |
-
# Calculate F1
|
| 668 |
-
if precision + recall == 0:
|
| 669 |
-
return 0.0
|
| 670 |
-
|
| 671 |
-
f1 = 2 * precision * recall / (precision + recall)
|
| 672 |
-
return f1
|
| 673 |
-
|
| 674 |
-
def _calculate_overall_score(self, results):
|
| 675 |
-
"""Calculate an overall score from evaluation results.
|
| 676 |
-
|
| 677 |
-
Args:
|
| 678 |
-
results: Evaluation results dictionary
|
| 679 |
-
|
| 680 |
-
Returns:
|
| 681 |
-
float: Overall score between 0 and 100
|
| 682 |
-
"""
|
| 683 |
-
# If there was an error, return a low score
|
| 684 |
-
if "error" in results:
|
| 685 |
-
return 0.0
|
| 686 |
-
|
| 687 |
-
score = 0.0
|
| 688 |
-
|
| 689 |
-
# Check for common metrics and weight them
|
| 690 |
-
if "accuracy" in results:
|
| 691 |
-
score += results["accuracy"] * 100
|
| 692 |
-
|
| 693 |
-
if "exact_match" in results:
|
| 694 |
-
score += results["exact_match"] * 100
|
| 695 |
-
|
| 696 |
-
if "f1" in results:
|
| 697 |
-
score += results["f1"] * 100
|
| 698 |
-
|
| 699 |
-
if "functional_correctness" in results:
|
| 700 |
-
score += results["functional_correctness"] * 100
|
| 701 |
-
|
| 702 |
-
# If multiple metrics were found, average them
|
| 703 |
-
num_metrics = sum(1 for metric in ["accuracy", "exact_match", "f1", "functional_correctness"] if metric in results)
|
| 704 |
-
|
| 705 |
-
if num_metrics > 0:
|
| 706 |
-
score /= num_metrics
|
| 707 |
-
else:
|
| 708 |
-
# Default score if no metrics available
|
| 709 |
-
score = 50.0
|
| 710 |
-
|
| 711 |
-
return score
|
| 712 |
-
|
| 713 |
-
def submit_evaluation(self, model_id, benchmark_id, user_id, priority=0):
|
| 714 |
-
"""Submit a model for evaluation on a benchmark.
|
| 715 |
-
|
| 716 |
-
Args:
|
| 717 |
-
model_id: Model ID in the database
|
| 718 |
-
benchmark_id: Benchmark ID in the database
|
| 719 |
-
user_id: User ID submitting the evaluation
|
| 720 |
-
priority: Queue priority (higher = higher priority)
|
| 721 |
-
|
| 722 |
-
Returns:
|
| 723 |
-
tuple: (evaluation_id, message)
|
| 724 |
-
"""
|
| 725 |
-
# Check if user can submit today
|
| 726 |
-
if not self.auth_manager.can_submit_benchmark(user_id):
|
| 727 |
-
return None, "Daily submission limit reached. Try again tomorrow."
|
| 728 |
-
|
| 729 |
-
try:
|
| 730 |
-
# Get model HuggingFace ID to check size
|
| 731 |
-
model_info = self.db_manager.get_model(model_id)
|
| 732 |
-
if not model_info:
|
| 733 |
-
return None, "Model not found in database."
|
| 734 |
-
|
| 735 |
-
# Check if model will fit in memory
|
| 736 |
-
will_fit, message = self.check_model_size(model_info['hf_model_id'])
|
| 737 |
-
|
| 738 |
-
if not will_fit:
|
| 739 |
-
return None, message
|
| 740 |
-
|
| 741 |
-
# Add evaluation to database and queue
|
| 742 |
-
evaluation_id = self.db_manager.add_evaluation(
|
| 743 |
-
model_id=model_id,
|
| 744 |
-
benchmark_id=benchmark_id,
|
| 745 |
-
priority=priority
|
| 746 |
-
)
|
| 747 |
-
|
| 748 |
-
# Update user's last submission date
|
| 749 |
-
self.auth_manager.update_submission_date(user_id)
|
| 750 |
-
|
| 751 |
-
# Make sure worker is running
|
| 752 |
-
self.start_worker()
|
| 753 |
-
|
| 754 |
-
return evaluation_id, f"Evaluation submitted successfully. {message}"
|
| 755 |
-
except Exception as e:
|
| 756 |
-
print(f"Submit evaluation error: {e}")
|
| 757 |
-
return None, f"Failed to submit evaluation: {str(e)}"
|
| 758 |
-
|
| 759 |
-
def get_queue_status(self):
|
| 760 |
-
"""Get the current status of the evaluation queue.
|
| 761 |
-
|
| 762 |
-
Returns:
|
| 763 |
-
dict: Queue status information
|
| 764 |
-
"""
|
| 765 |
-
try:
|
| 766 |
-
# Get evaluations from database
|
| 767 |
-
pending_evals = self.db_manager.get_evaluation_results(status="pending")
|
| 768 |
-
running_evals = self.db_manager.get_evaluation_results(status="running")
|
| 769 |
-
completed_evals = self.db_manager.get_evaluation_results(status="completed")
|
| 770 |
-
failed_evals = self.db_manager.get_evaluation_results(status="failed")
|
| 771 |
-
|
| 772 |
-
# Get current evaluation progress
|
| 773 |
-
current_eval, progress = self.get_current_progress()
|
| 774 |
-
|
| 775 |
-
return {
|
| 776 |
-
"pending": len(pending_evals),
|
| 777 |
-
"running": len(running_evals),
|
| 778 |
-
"completed": len(completed_evals),
|
| 779 |
-
"failed": len(failed_evals),
|
| 780 |
-
"is_processing": self.is_processing,
|
| 781 |
-
"current_evaluation": current_eval,
|
| 782 |
-
"progress": progress,
|
| 783 |
-
"memory_limit_gb": self.memory_limit_gb
|
| 784 |
-
}
|
| 785 |
-
except Exception as e:
|
| 786 |
-
print(f"Queue status error: {e}")
|
| 787 |
-
return {
|
| 788 |
-
"pending": 0,
|
| 789 |
-
"running": 0,
|
| 790 |
-
"completed": 0,
|
| 791 |
-
"failed": 0,
|
| 792 |
-
"is_processing": self.is_processing,
|
| 793 |
-
"current_evaluation": None,
|
| 794 |
-
"progress": 0,
|
| 795 |
-
"memory_limit_gb": self.memory_limit_gb,
|
| 796 |
-
"error": str(e)
|
| 797 |
-
}
|
| 798 |
-
|
| 799 |
-
# Model submission UI components
|
| 800 |
def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
| 801 |
"""Create the model submission UI components.
|
| 802 |
|
|
@@ -850,9 +56,12 @@ def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
|
| 850 |
info="Select one category that best describes your model"
|
| 851 |
)
|
| 852 |
|
|
|
|
| 853 |
benchmark_dropdown = gr.Dropdown(
|
| 854 |
label="Benchmark",
|
| 855 |
-
info="Select a benchmark to evaluate your model on"
|
|
|
|
|
|
|
| 856 |
)
|
| 857 |
|
| 858 |
refresh_benchmarks_button = gr.Button("Refresh Benchmarks")
|
|
@@ -899,8 +108,14 @@ def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
|
| 899 |
def refresh_benchmarks_handler():
|
| 900 |
benchmarks = db_manager.get_benchmarks()
|
| 901 |
|
| 902 |
-
# Format for dropdown
|
| 903 |
-
choices = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 904 |
|
| 905 |
return gr.update(choices=choices)
|
| 906 |
|
|
@@ -914,6 +129,9 @@ def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
|
| 914 |
if not model_id or not model_name or not model_tag or not benchmark_id:
|
| 915 |
return "Please fill in all required fields."
|
| 916 |
|
|
|
|
|
|
|
|
|
|
| 917 |
try:
|
| 918 |
# Check if model will fit in RAM
|
| 919 |
will_fit, size_message = evaluation_queue.check_model_size(model_id)
|
|
|
|
| 1 |
"""
|
| 2 |
+
Updated create_model_submission_ui function that properly displays benchmark names in dropdown.
|
| 3 |
+
Replace this function in your evaluation_queue.py file.
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
def create_model_submission_ui(evaluation_queue, auth_manager, db_manager):
|
| 7 |
"""Create the model submission UI components.
|
| 8 |
|
|
|
|
| 56 |
info="Select one category that best describes your model"
|
| 57 |
)
|
| 58 |
|
| 59 |
+
# Fixed benchmark dropdown to properly show names
|
| 60 |
benchmark_dropdown = gr.Dropdown(
|
| 61 |
label="Benchmark",
|
| 62 |
+
info="Select a benchmark to evaluate your model on",
|
| 63 |
+
choices=[("none", "Loading benchmarks...")],
|
| 64 |
+
value=None
|
| 65 |
)
|
| 66 |
|
| 67 |
refresh_benchmarks_button = gr.Button("Refresh Benchmarks")
|
|
|
|
| 108 |
def refresh_benchmarks_handler():
|
| 109 |
benchmarks = db_manager.get_benchmarks()
|
| 110 |
|
| 111 |
+
# Format for dropdown - properly formatted to display names
|
| 112 |
+
choices = []
|
| 113 |
+
for b in benchmarks:
|
| 114 |
+
# Add as tuple of (id, name) to ensure proper display
|
| 115 |
+
choices.append((str(b["id"]), b["name"]))
|
| 116 |
+
|
| 117 |
+
if not choices:
|
| 118 |
+
choices = [("none", "No benchmarks available - add some first")]
|
| 119 |
|
| 120 |
return gr.update(choices=choices)
|
| 121 |
|
|
|
|
| 129 |
if not model_id or not model_name or not model_tag or not benchmark_id:
|
| 130 |
return "Please fill in all required fields."
|
| 131 |
|
| 132 |
+
if benchmark_id == "none":
|
| 133 |
+
return "Please select a valid benchmark."
|
| 134 |
+
|
| 135 |
try:
|
| 136 |
# Check if model will fit in RAM
|
| 137 |
will_fit, size_message = evaluation_queue.check_model_size(model_id)
|