Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import os | |
| import re | |
| from collections.abc import Iterator | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer | |
| DESCRIPTION = "# ICONN Lite Chat" | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p class='warning'>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| top_k: int = 50 | |
| MAX_MAX_NEW_TOKENS = 100000000 | |
| DEFAULT_MAX_NEW_TOKENS = 10240 | |
| MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
| if torch.cuda.is_available(): | |
| model_id = "ICONNAI/ICONN-1-Mini-Beta" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, torch_dtype=torch.float16, device_map="auto", trust_remote_code=True | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained(model_id) | |
| def wrap_thinking_blocks(text: str) -> str: | |
| def replacer(match): | |
| content = match.group(1).strip() | |
| return ( | |
| "<details class='thinking-block'>" | |
| "<summary>💭 Thinking...</summary>" | |
| f"<div class='thinking-content'><pre>{content}</pre></div>" | |
| "</details>" | |
| ) | |
| return re.sub(r"<think>\s*(.*?)\s*</think>", replacer, text, flags=re.DOTALL) | |
| def generate( | |
| message: str, | |
| chat_history: list[dict], | |
| max_new_tokens: int = 1024, | |
| temperature: float = 0.6, | |
| top_p: float = 0.9, | |
| top_k: int = 50, | |
| repetition_penalty: float = 1.2, | |
| ) -> Iterator[str]: | |
| conversation = [*chat_history, {"role": "user", "content": message}] | |
| input_ids = tokenizer.apply_chat_template( | |
| conversation, return_tensors="pt", enable_thinking=True | |
| ) | |
| if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
| input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
| gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
| input_ids = input_ids.to(model.device) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| {"input_ids": input_ids}, | |
| streamer=streamer, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| top_p=top_p, | |
| top_k=top_k, | |
| temperature=temperature, | |
| num_beams=1, | |
| repetition_penalty=repetition_penalty, | |
| ) | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| wrapped = wrap_thinking_blocks("".join(outputs + [text])) | |
| yield wrapped | |
| outputs.append(text) | |
| demo = gr.ChatInterface( | |
| fn=generate, | |
| additional_inputs=[ | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
| gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
| gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
| ], | |
| stop_btn=None, | |
| examples=[ | |
| ["Can you explain briefly to me what is the Python programming language?"], | |
| ["Explain the plot of Cinderella in a sentence."], | |
| ["How many hours does it take a man to eat a Helicopter?"], | |
| ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], | |
| ], | |
| type="messages", | |
| description=DESCRIPTION, | |
| css_paths="style.css", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=20).launch() | |