EnigmaOfTheWorld commited on
Commit
bbc856f
·
1 Parent(s): dbf8103

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +84 -7
app.py CHANGED
@@ -1,15 +1,92 @@
 
 
 
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  theme = gr.themes.Glass(
4
  primary_hue="cyan",
5
 
6
- neutral_hue="gray",
7
  )
8
 
9
  interface = gr.Interface(
10
- fn=lambda x: x,
11
- inputs = [gr.inputs.Textbox()],
12
- outputs = [gr.inputs.Textbox()],
13
- theme=theme)
14
-
15
- interface.launch()
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+
4
  import gradio as gr
5
+ from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel
6
+ import openai
7
+
8
+
9
+
10
+ openai.api_key = os.environ['OPENAI_KEY']
11
+
12
+
13
+ ## Training models
14
+ device='cpu'
15
+ encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
16
+ decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
17
+ model_checkpoint = "nlpconnect/vit-gpt2-image-captioning"
18
+ feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint)
19
+ tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint)
20
+ model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)
21
+
22
+
23
+ ## READING THE IMAGE
24
+ ## Extracting features from image
25
+ ## then create a context for the image like
26
+ ## Then input the department and context extracted and send it to LLM to get captio meme
27
+ def predict(department,image,max_length=64, num_beams=4):
28
+ image = image.convert('RGB')
29
+ image = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
30
+ print(image)
31
+ clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0]
32
+ print(clean_text)
33
+ caption_ids = model.generate(image, max_length = max_length)[0]
34
+ print(caption_ids)
35
+ caption_text = clean_text(tokenizer.decode(caption_ids))
36
+ print(caption_text)
37
+ dept=department
38
+ context= caption_text
39
+ response = openai.Completion.create(
40
+ model="text-davinci-003",
41
+ prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-',
42
+ max_tokens=20,
43
+ temperature=0.8)
44
+ reponse = response.choices[0].text
45
+ reponse = reponse.replace("department", "")
46
+ Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse
47
+
48
+
49
+ return reponse
50
+
51
 
52
+
53
+
54
+
55
+
56
+
57
+ output = gr.outputs.Textbox(type="text",label="Meme")
58
+
59
+ examples = [f"example{i}.png" for i in range(1,7)]
60
+
61
+
62
+ ## GRADIO INTERFACE
63
+
64
+
65
+ description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)"
66
+ title = "Meme world 🖼️"
67
+ dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ]
68
+
69
+ article = "Created By : Xaheen "
70
  theme = gr.themes.Glass(
71
  primary_hue="cyan",
72
 
73
+ neutral_hue="gray",font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
74
  )
75
 
76
  interface = gr.Interface(
77
+ fn=predict,
78
+ inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)],
79
+
80
+ theme=theme,
81
+ outputs=output,
82
+ examples =[['data science', 'example5.png'],
83
+ ['product management', 'example2.png'],
84
+ ['startup', 'example3.png'],
85
+ ['marketing', 'example4.png'],
86
+ ['agile', 'example1.png'],
87
+ ['crypto', 'example6.png']],
88
+ title=title,
89
+ description=description,
90
+ article = article
91
+ )
92
+ interface.launch(debug=True)