import os import re import gradio as gr from transformers import AutoTokenizer, ViTFeatureExtractor, VisionEncoderDecoderModel import openai openai.api_key = os.environ['OPENAI_KEY'] ## Training models device='cpu' encoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" decoder_checkpoint = "nlpconnect/vit-gpt2-image-captioning" model_checkpoint = "nlpconnect/vit-gpt2-image-captioning" feature_extractor = ViTFeatureExtractor.from_pretrained(encoder_checkpoint) tokenizer = AutoTokenizer.from_pretrained(decoder_checkpoint) model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device) ## READING THE IMAGE ## Extracting features from image ## then create a context for the image like ## Then input the department and context extracted and send it to LLM to get captio meme def predict(department,image,max_length=64, num_beams=4): image = image.convert('RGB') image = feature_extractor(image, return_tensors="pt").pixel_values.to(device) print(image) clean_text = lambda x: x.replace('<|endoftext|>','').split('\n')[0] print(clean_text) caption_ids = model.generate(image, max_length = max_length)[0] print(caption_ids) caption_text = clean_text(tokenizer.decode(caption_ids)) print(caption_text) dept=department context= caption_text response = openai.Completion.create( model="text-davinci-003", prompt=f'create non offensive one line meme for given department and context\n\ndepartment- data science\ncontext-a man sitting on a bench with a laptop\nmeme- \"I\'m not a data scientist, but I play one on my laptop.\"\n\ndepartment-startup\ncontext-a young boy is smiling while using a laptop\nmeme-\"When your startup gets funded and you can finally afford a new laptop\"\n\ndepartment- {dept}\ncontext-{context}\nmeme-', max_tokens=20, temperature=0.8) reponse = response.choices[0].text reponse = reponse.replace("department", "") Feedback_SQL="DEPT"+dept+"CAPT"+caption_text+"MAMAY"+reponse return reponse output = gr.outputs.Textbox(type="text",label="Meme") examples = [f"example{i}.png" for i in range(1,7)] ## GRADIO INTERFACE description= " Looking for a fun and easy way to generate memes? Look no further than Meme world! Leveraging large language models like GPT-3PT-3 / Ai21 / Cohere, you can create memes that are sure to be a hit with your friends or network. Created with ♥️ by Arsalan @[Xaheen](https://www.linkedin.com/in/sallu-mandya/). kindly share your thoughts in discussion session and use the app responsibly #NO_Offense \n \n built with ❤️ @[Xhaheen](https://www.linkedin.com/in/sallu-mandya/)" title = "Meme world 🖼️" dropdown=["data science", "product management","marketing","startup" ,"agile","crypto" , "SEO" ] article = "Created By : Xaheen " theme = gr.themes.Glass( primary_hue="cyan", neutral_hue="gray",font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], ) interface = gr.Interface( fn=predict, inputs = [gr.inputs.Dropdown(dropdown),gr.inputs.Image(label="Upload your Image", type = 'pil', optional=True)], theme=theme, outputs=output, examples =[['data science', 'example5.png'], ['product management', 'example2.png'], ['startup', 'example3.png'], ['marketing', 'example4.png'], ['agile', 'example1.png'], ['crypto', 'example6.png']], title=title, description=description, article = article ) interface.launch(debug=True)