Spaces:
Runtime error
Runtime error
| import gradio as gr, os | |
| from transformers import BartForConditionalGeneration | |
| # 加载 BART 模型 | |
| model = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn") | |
| def generate_summary(file): | |
| # 重置文件指针位置 | |
| file.seek(0) | |
| # 读取上传的文本文件内容 | |
| text_content = file.read() | |
| # 使用模型进行处理(摘要生成) | |
| summary_ids = model.generate(text_content, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True) | |
| summary = model.decode(summary_ids[0], skip_special_tokens=True) | |
| return summary | |
| demo = gr.Interface( | |
| fn=generate_summary, | |
| inputs=gr.File(), | |
| outputs="text", | |
| live=False | |
| ) | |
| # 启动应用 | |
| demo.launch(share=True) | |
| # 加载 BART 模型 | |
| model = BartForConditionalGeneration.from_pretrained("models/fnlp/bart-base-chinese") | |
| def generate_summary(file): | |
| # 重置文件指针位置 | |
| file.seek(0) | |
| # 读取上传的文本文件内容 | |
| text_content = file.read() | |
| # 使用模型进行处理(摘要生成) | |
| summary_ids = model.generate(text_content, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True) | |
| summary = model.decode(summary_ids[0], skip_special_tokens=True) | |
| return summary | |
| demo = gr.Interface( | |
| fn=generate_summary, | |
| inputs=gr.File(), | |
| outputs="text", | |
| live=False | |
| ) | |
| # 启动应用 | |
| demo.launch(share=True) | |