import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("swiss-ai/Apertus-8B-Instruct-2509") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" try: for chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): try: # Primeiro tenta pegar via delta (alguns modelos usam) if hasattr(chunk.choices[0], "delta") and chunk.choices[0].delta and getattr(chunk.choices[0].delta, "content", None): content = chunk.choices[0].delta.content # Se não tiver, tenta via message.content (outros modelos usam) elif hasattr(chunk.choices[0], "message") and chunk.choices[0].message and getattr(chunk.choices[0].message, "content", None): content = chunk.choices[0].message.content else: continue # não há conteúdo válido, pula response += content yield response except Exception as e: print(f"Erro ao processar chunk: {e}") continue except Exception as e: yield f"Erro inesperado: {e}" if response.strip() == "": yield "⚠️ O modelo não retornou resposta. Tente ajustar max_tokens, temperature ou escolha outro modelo." # Interface do Gradio demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot. Your name is Juninho.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()