Test / api /ltx /inference.py
EuuIia's picture
Update api/ltx/inference.py
bb237e0 verified
import argparse
import os
import random
from datetime import datetime
from pathlib import Path
from diffusers.utils import logging
from typing import Optional, List, Union
import yaml
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
import imageio
import json
import numpy as np
import torch
import cv2
from safetensors import safe_open
from PIL import Image
from transformers import (
T5EncoderModel,
T5Tokenizer,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
)
from huggingface_hub import hf_hub_download
from ltx_video.models.autoencoders.causal_video_autoencoder import (
CausalVideoAutoencoder,
)
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.models.transformers.transformer3d import Transformer3DModel
from ltx_video.pipelines.pipeline_ltx_video import (
ConditioningItem,
LTXVideoPipeline,
LTXMultiScalePipeline,
)
from ltx_video.schedulers.rf import RectifiedFlowScheduler
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
import ltx_video.pipelines.crf_compressor as crf_compressor
MAX_HEIGHT = 720
MAX_WIDTH = 1280
MAX_NUM_FRAMES = 257
logger = logging.get_logger("LTX-Video")
def get_total_gpu_memory():
if torch.cuda.is_available():
total_memory = torch.cuda.get_device_properties(0).total_memory / (1024**3)
return total_memory
return 0
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
return "cpu"
def load_image_to_tensor_with_resize_and_crop(
image_input: Union[str, Image.Image],
target_height: int = 512,
target_width: int = 768,
just_crop: bool = False,
) -> torch.Tensor:
"""Load and process an image into a tensor.
Args:
image_input: Either a file path (str) or a PIL Image object
target_height: Desired height of output tensor
target_width: Desired width of output tensor
just_crop: If True, only crop the image to the target size without resizing
"""
if isinstance(image_input, str):
image = Image.open(image_input).convert("RGB")
elif isinstance(image_input, Image.Image):
image = image_input
else:
raise ValueError("image_input must be either a file path or a PIL Image object")
input_width, input_height = image.size
aspect_ratio_target = target_width / target_height
aspect_ratio_frame = input_width / input_height
if aspect_ratio_frame > aspect_ratio_target:
new_width = int(input_height * aspect_ratio_target)
new_height = input_height
x_start = (input_width - new_width) // 2
y_start = 0
else:
new_width = input_width
new_height = int(input_width / aspect_ratio_target)
x_start = 0
y_start = (input_height - new_height) // 2
image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height))
if not just_crop:
image = image.resize((target_width, target_height))
image = np.array(image)
image = cv2.GaussianBlur(image, (3, 3), 0)
frame_tensor = torch.from_numpy(image).float()
frame_tensor = crf_compressor.compress(frame_tensor / 255.0) * 255.0
frame_tensor = frame_tensor.permute(2, 0, 1)
frame_tensor = (frame_tensor / 127.5) - 1.0
# Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width)
return frame_tensor.unsqueeze(0).unsqueeze(2)
def calculate_padding(
source_height: int, source_width: int, target_height: int, target_width: int
) -> tuple[int, int, int, int]:
# Calculate total padding needed
pad_height = target_height - source_height
pad_width = target_width - source_width
# Calculate padding for each side
pad_top = pad_height // 2
pad_bottom = pad_height - pad_top # Handles odd padding
pad_left = pad_width // 2
pad_right = pad_width - pad_left # Handles odd padding
# Return padded tensor
# Padding format is (left, right, top, bottom)
padding = (pad_left, pad_right, pad_top, pad_bottom)
return padding
def convert_prompt_to_filename(text: str, max_len: int = 20) -> str:
# Remove non-letters and convert to lowercase
clean_text = "".join(
char.lower() for char in text if char.isalpha() or char.isspace()
)
# Split into words
words = clean_text.split()
# Build result string keeping track of length
result = []
current_length = 0
for word in words:
# Add word length plus 1 for underscore (except for first word)
new_length = current_length + len(word)
if new_length <= max_len:
result.append(word)
current_length += len(word)
else:
break
return "-".join(result)
# Generate output video name
def get_unique_filename(
base: str,
ext: str,
prompt: str,
seed: int,
resolution: tuple[int, int, int],
dir: Path,
endswith=None,
index_range=1000,
) -> Path:
base_filename = f"{base}_{convert_prompt_to_filename(prompt, max_len=30)}_{seed}_{resolution[0]}x{resolution[1]}x{resolution[2]}"
for i in range(index_range):
filename = dir / f"{base_filename}_{i}{endswith if endswith else ''}{ext}"
if not os.path.exists(filename):
return filename
raise FileExistsError(
f"Could not find a unique filename after {index_range} attempts."
)
def seed_everething(seed: int):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
if torch.backends.mps.is_available():
torch.mps.manual_seed(seed)
def main():
parser = argparse.ArgumentParser(
description="Load models from separate directories and run the pipeline."
)
# Directories
parser.add_argument(
"--output_path",
type=str,
default=None,
help="Path to the folder to save output video, if None will save in outputs/ directory.",
)
parser.add_argument("--seed", type=int, default="171198")
# Pipeline parameters
parser.add_argument(
"--num_images_per_prompt",
type=int,
default=1,
help="Number of images per prompt",
)
parser.add_argument(
"--image_cond_noise_scale",
type=float,
default=0.15,
help="Amount of noise to add to the conditioned image",
)
parser.add_argument(
"--height",
type=int,
default=704,
help="Height of the output video frames. Optional if an input image provided.",
)
parser.add_argument(
"--width",
type=int,
default=1216,
help="Width of the output video frames. If None will infer from input image.",
)
parser.add_argument(
"--num_frames",
type=int,
default=121,
help="Number of frames to generate in the output video",
)
parser.add_argument(
"--frame_rate", type=int, default=30, help="Frame rate for the output video"
)
parser.add_argument(
"--device",
default=None,
help="Device to run inference on. If not specified, will automatically detect and use CUDA or MPS if available, else CPU.",
)
parser.add_argument(
"--pipeline_config",
type=str,
default="configs/ltxv-13b-0.9.7-dev.yaml",
help="The path to the config file for the pipeline, which contains the parameters for the pipeline",
)
# Prompts
parser.add_argument(
"--prompt",
type=str,
help="Text prompt to guide generation",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="worst quality, inconsistent motion, blurry, jittery, distorted",
help="Negative prompt for undesired features",
)
parser.add_argument(
"--offload_to_cpu",
action="store_true",
help="Offloading unnecessary computations to CPU.",
)
# video-to-video arguments:
parser.add_argument(
"--input_media_path",
type=str,
default=None,
help="Path to the input video (or imaage) to be modified using the video-to-video pipeline",
)
# Conditioning arguments
parser.add_argument(
"--conditioning_media_paths",
type=str,
nargs="*",
help="List of paths to conditioning media (images or videos). Each path will be used as a conditioning item.",
)
parser.add_argument(
"--conditioning_strengths",
type=float,
nargs="*",
help="List of conditioning strengths (between 0 and 1) for each conditioning item. Must match the number of conditioning items.",
)
parser.add_argument(
"--conditioning_start_frames",
type=int,
nargs="*",
help="List of frame indices where each conditioning item should be applied. Must match the number of conditioning items.",
)
args = parser.parse_args()
logger.warning(f"Running generation with arguments: {args}")
infer(**vars(args))
def create_ltx_video_pipeline(
ckpt_path: str,
precision: str,
text_encoder_model_name_or_path: str,
sampler: Optional[str] = None,
device: Optional[str] = None,
enhance_prompt: bool = False,
prompt_enhancer_image_caption_model_name_or_path: Optional[str] = None,
prompt_enhancer_llm_model_name_or_path: Optional[str] = None,
) -> LTXVideoPipeline:
ckpt_path = Path(ckpt_path)
assert os.path.exists(
ckpt_path
), f"Ckpt path provided (--ckpt_path) {ckpt_path} does not exist"
with safe_open(ckpt_path, framework="pt") as f:
metadata = f.metadata()
config_str = metadata.get("config")
configs = json.loads(config_str)
allowed_inference_steps = configs.get("allowed_inference_steps", None)
vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
transformer = Transformer3DModel.from_pretrained(ckpt_path)
# Use constructor if sampler is specified, otherwise use from_pretrained
if sampler == "from_checkpoint" or not sampler:
scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)
else:
scheduler = RectifiedFlowScheduler(
sampler=("Uniform" if sampler.lower() == "uniform" else "LinearQuadratic")
)
text_encoder = T5EncoderModel.from_pretrained(
text_encoder_model_name_or_path, subfolder="text_encoder"
)
patchifier = SymmetricPatchifier(patch_size=1)
tokenizer = T5Tokenizer.from_pretrained(
text_encoder_model_name_or_path, subfolder="tokenizer"
)
transformer = transformer.to(device)
vae = vae.to(device)
text_encoder = text_encoder.to(device)
if enhance_prompt:
prompt_enhancer_image_caption_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_image_caption_processor = AutoProcessor.from_pretrained(
prompt_enhancer_image_caption_model_name_or_path, trust_remote_code=True
)
prompt_enhancer_llm_model = AutoModelForCausalLM.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
torch_dtype="bfloat16",
)
prompt_enhancer_llm_tokenizer = AutoTokenizer.from_pretrained(
prompt_enhancer_llm_model_name_or_path,
)
else:
prompt_enhancer_image_caption_model = None
prompt_enhancer_image_caption_processor = None
prompt_enhancer_llm_model = None
prompt_enhancer_llm_tokenizer = None
vae = vae.to(torch.bfloat16)
if precision == "bfloat16" and transformer.dtype != torch.bfloat16:
transformer = transformer.to(torch.bfloat16)
text_encoder = text_encoder.to(torch.bfloat16)
# Use submodels for the pipeline
submodel_dict = {
"transformer": transformer,
"patchifier": patchifier,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"scheduler": scheduler,
"vae": vae,
"prompt_enhancer_image_caption_model": prompt_enhancer_image_caption_model,
"prompt_enhancer_image_caption_processor": prompt_enhancer_image_caption_processor,
"prompt_enhancer_llm_model": prompt_enhancer_llm_model,
"prompt_enhancer_llm_tokenizer": prompt_enhancer_llm_tokenizer,
"allowed_inference_steps": allowed_inference_steps,
}
pipeline = LTXVideoPipeline(**submodel_dict)
pipeline = pipeline.to(device)
return pipeline
def create_latent_upsampler(latent_upsampler_model_path: str, device: str):
latent_upsampler = LatentUpsampler.from_pretrained(latent_upsampler_model_path)
latent_upsampler.to(device)
latent_upsampler.eval()
return latent_upsampler
def infer(
output_path: Optional[str],
seed: int,
pipeline_config: str,
image_cond_noise_scale: float,
height: Optional[int],
width: Optional[int],
num_frames: int,
frame_rate: int,
prompt: str,
negative_prompt: str,
offload_to_cpu: bool,
input_media_path: Optional[str] = None,
conditioning_media_paths: Optional[List[str]] = None,
conditioning_strengths: Optional[List[float]] = None,
conditioning_start_frames: Optional[List[int]] = None,
device: Optional[str] = None,
**kwargs,
):
# check if pipeline_config is a file
if not os.path.isfile(pipeline_config):
raise ValueError(f"Pipeline config file {pipeline_config} does not exist")
with open(pipeline_config, "r") as f:
pipeline_config = yaml.safe_load(f)
models_dir = "MODEL_DIR"
ltxv_model_name_or_path = pipeline_config["checkpoint_path"]
if not os.path.isfile(ltxv_model_name_or_path):
ltxv_model_path = hf_hub_download(
repo_id="Lightricks/LTX-Video",
filename=ltxv_model_name_or_path,
local_dir=models_dir,
repo_type="model",
)
else:
ltxv_model_path = ltxv_model_name_or_path
spatial_upscaler_model_name_or_path = pipeline_config.get(
"spatial_upscaler_model_path"
)
if spatial_upscaler_model_name_or_path and not os.path.isfile(
spatial_upscaler_model_name_or_path
):
spatial_upscaler_model_path = hf_hub_download(
repo_id="Lightricks/LTX-Video",
filename=spatial_upscaler_model_name_or_path,
local_dir=models_dir,
repo_type="model",
)
else:
spatial_upscaler_model_path = spatial_upscaler_model_name_or_path
if kwargs.get("input_image_path", None):
logger.warning(
"Please use conditioning_media_paths instead of input_image_path."
)
assert not conditioning_media_paths and not conditioning_start_frames
conditioning_media_paths = [kwargs["input_image_path"]]
conditioning_start_frames = [0]
# Validate conditioning arguments
if conditioning_media_paths:
# Use default strengths of 1.0
if not conditioning_strengths:
conditioning_strengths = [1.0] * len(conditioning_media_paths)
if not conditioning_start_frames:
raise ValueError(
"If `conditioning_media_paths` is provided, "
"`conditioning_start_frames` must also be provided"
)
if len(conditioning_media_paths) != len(conditioning_strengths) or len(
conditioning_media_paths
) != len(conditioning_start_frames):
raise ValueError(
"`conditioning_media_paths`, `conditioning_strengths`, "
"and `conditioning_start_frames` must have the same length"
)
if any(s < 0 or s > 1 for s in conditioning_strengths):
raise ValueError("All conditioning strengths must be between 0 and 1")
if any(f < 0 or f >= num_frames for f in conditioning_start_frames):
raise ValueError(
f"All conditioning start frames must be between 0 and {num_frames-1}"
)
seed_everething(seed)
if offload_to_cpu and not torch.cuda.is_available():
logger.warning(
"offload_to_cpu is set to True, but offloading will not occur since the model is already running on CPU."
)
offload_to_cpu = False
else:
offload_to_cpu = offload_to_cpu and get_total_gpu_memory() < 30
output_dir = (
Path(output_path)
if output_path
else Path(f"outputs/{datetime.today().strftime('%Y-%m-%d')}")
)
output_dir.mkdir(parents=True, exist_ok=True)
# Adjust dimensions to be divisible by 32 and num_frames to be (N * 8 + 1)
height_padded = ((height - 1) // 32 + 1) * 32
width_padded = ((width - 1) // 32 + 1) * 32
num_frames_padded = ((num_frames - 2) // 8 + 1) * 8 + 1
padding = calculate_padding(height, width, height_padded, width_padded)
logger.warning(
f"Padded dimensions: {height_padded}x{width_padded}x{num_frames_padded}"
)
prompt_enhancement_words_threshold = pipeline_config[
"prompt_enhancement_words_threshold"
]
prompt_word_count = len(prompt.split())
enhance_prompt = (
prompt_enhancement_words_threshold > 0
and prompt_word_count < prompt_enhancement_words_threshold
)
if prompt_enhancement_words_threshold > 0 and not enhance_prompt:
logger.info(
f"Prompt has {prompt_word_count} words, which exceeds the threshold of {prompt_enhancement_words_threshold}. Prompt enhancement disabled."
)
precision = pipeline_config["precision"]
text_encoder_model_name_or_path = pipeline_config["text_encoder_model_name_or_path"]
sampler = pipeline_config["sampler"]
prompt_enhancer_image_caption_model_name_or_path = pipeline_config[
"prompt_enhancer_image_caption_model_name_or_path"
]
prompt_enhancer_llm_model_name_or_path = pipeline_config[
"prompt_enhancer_llm_model_name_or_path"
]
pipeline = create_ltx_video_pipeline(
ckpt_path=ltxv_model_path,
precision=precision,
text_encoder_model_name_or_path=text_encoder_model_name_or_path,
sampler=sampler,
device=kwargs.get("device", get_device()),
enhance_prompt=enhance_prompt,
prompt_enhancer_image_caption_model_name_or_path=prompt_enhancer_image_caption_model_name_or_path,
prompt_enhancer_llm_model_name_or_path=prompt_enhancer_llm_model_name_or_path,
)
if pipeline_config.get("pipeline_type", None) == "multi-scale":
if not spatial_upscaler_model_path:
raise ValueError(
"spatial upscaler model path is missing from pipeline config file and is required for multi-scale rendering"
)
latent_upsampler = create_latent_upsampler(
spatial_upscaler_model_path, pipeline.device
)
pipeline = LTXMultiScalePipeline(pipeline, latent_upsampler=latent_upsampler)
media_item = None
if input_media_path:
media_item = load_media_file(
media_path=input_media_path,
height=height,
width=width,
max_frames=num_frames_padded,
padding=padding,
)
conditioning_items = (
prepare_conditioning(
conditioning_media_paths=conditioning_media_paths,
conditioning_strengths=conditioning_strengths,
conditioning_start_frames=conditioning_start_frames,
height=height,
width=width,
num_frames=num_frames,
padding=padding,
pipeline=pipeline,
)
if conditioning_media_paths
else None
)
stg_mode = pipeline_config.get("stg_mode", "attention_values")
del pipeline_config["stg_mode"]
if stg_mode.lower() == "stg_av" or stg_mode.lower() == "attention_values":
skip_layer_strategy = SkipLayerStrategy.AttentionValues
elif stg_mode.lower() == "stg_as" or stg_mode.lower() == "attention_skip":
skip_layer_strategy = SkipLayerStrategy.AttentionSkip
elif stg_mode.lower() == "stg_r" or stg_mode.lower() == "residual":
skip_layer_strategy = SkipLayerStrategy.Residual
elif stg_mode.lower() == "stg_t" or stg_mode.lower() == "transformer_block":
skip_layer_strategy = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid spatiotemporal guidance mode: {stg_mode}")
# Prepare input for the pipeline
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
}
device = device or get_device()
generator = torch.Generator(device=device).manual_seed(seed)
images = pipeline(
**pipeline_config,
skip_layer_strategy=skip_layer_strategy,
generator=generator,
output_type="pt",
callback_on_step_end=None,
height=height_padded,
width=width_padded,
num_frames=num_frames_padded,
frame_rate=frame_rate,
**sample,
media_items=media_item,
conditioning_items=conditioning_items,
is_video=True,
vae_per_channel_normalize=True,
image_cond_noise_scale=image_cond_noise_scale,
mixed_precision=(precision == "mixed_precision"),
offload_to_cpu=offload_to_cpu,
device=device,
enhance_prompt=enhance_prompt,
).images
# Crop the padded images to the desired resolution and number of frames
(pad_left, pad_right, pad_top, pad_bottom) = padding
pad_bottom = -pad_bottom
pad_right = -pad_right
if pad_bottom == 0:
pad_bottom = images.shape[3]
if pad_right == 0:
pad_right = images.shape[4]
images = images[:, :, :num_frames, pad_top:pad_bottom, pad_left:pad_right]
for i in range(images.shape[0]):
# Gathering from B, C, F, H, W to C, F, H, W and then permuting to F, H, W, C
video_np = images[i].permute(1, 2, 3, 0).cpu().float().numpy()
# Unnormalizing images to [0, 255] range
video_np = (video_np * 255).astype(np.uint8)
fps = frame_rate
height, width = video_np.shape[1:3]
# In case a single image is generated
if video_np.shape[0] == 1:
output_filename = get_unique_filename(
f"image_output_{i}",
".png",
prompt=prompt,
seed=seed,
resolution=(height, width, num_frames),
dir=output_dir,
)
imageio.imwrite(output_filename, video_np[0])
else:
output_filename = get_unique_filename(
f"video_output_{i}",
".mp4",
prompt=prompt,
seed=seed,
resolution=(height, width, num_frames),
dir=output_dir,
)
# Write video
with imageio.get_writer(output_filename, fps=fps) as video:
for frame in video_np:
video.append_data(frame)
logger.warning(f"Output saved to {output_filename}")
def prepare_conditioning(
conditioning_media_paths: List[str],
conditioning_strengths: List[float],
conditioning_start_frames: List[int],
height: int,
width: int,
num_frames: int,
padding: tuple[int, int, int, int],
pipeline: LTXVideoPipeline,
) -> Optional[List[ConditioningItem]]:
"""Prepare conditioning items based on input media paths and their parameters.
Args:
conditioning_media_paths: List of paths to conditioning media (images or videos)
conditioning_strengths: List of conditioning strengths for each media item
conditioning_start_frames: List of frame indices where each item should be applied
height: Height of the output frames
width: Width of the output frames
num_frames: Number of frames in the output video
padding: Padding to apply to the frames
pipeline: LTXVideoPipeline object used for condition video trimming
Returns:
A list of ConditioningItem objects.
"""
conditioning_items = []
for path, strength, start_frame in zip(
conditioning_media_paths, conditioning_strengths, conditioning_start_frames
):
num_input_frames = orig_num_input_frames = get_media_num_frames(path)
if hasattr(pipeline, "trim_conditioning_sequence") and callable(
getattr(pipeline, "trim_conditioning_sequence")
):
num_input_frames = pipeline.trim_conditioning_sequence(
start_frame, orig_num_input_frames, num_frames
)
if num_input_frames < orig_num_input_frames:
logger.warning(
f"Trimming conditioning video {path} from {orig_num_input_frames} to {num_input_frames} frames."
)
media_tensor = load_media_file(
media_path=path,
height=height,
width=width,
max_frames=num_input_frames,
padding=padding,
just_crop=True,
)
conditioning_items.append(ConditioningItem(media_tensor, start_frame, strength))
return conditioning_items
def get_media_num_frames(media_path: str) -> int:
is_video = any(
media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]
)
num_frames = 1
if is_video:
reader = imageio.get_reader(media_path)
num_frames = reader.count_frames()
reader.close()
return num_frames
def load_media_file(
media_path: str,
height: int,
width: int,
max_frames: int,
padding: tuple[int, int, int, int],
just_crop: bool = False,
) -> torch.Tensor:
is_video = any(
media_path.lower().endswith(ext) for ext in [".mp4", ".avi", ".mov", ".mkv"]
)
if is_video:
reader = imageio.get_reader(media_path)
num_input_frames = min(reader.count_frames(), max_frames)
# Read and preprocess the relevant frames from the video file.
frames = []
for i in range(num_input_frames):
frame = Image.fromarray(reader.get_data(i))
frame_tensor = load_image_to_tensor_with_resize_and_crop(
frame, height, width, just_crop=just_crop
)
frame_tensor = torch.nn.functional.pad(frame_tensor, padding)
frames.append(frame_tensor)
reader.close()
# Stack frames along the temporal dimension
media_tensor = torch.cat(frames, dim=2)
else: # Input image
media_tensor = load_image_to_tensor_with_resize_and_crop(
media_path, height, width, just_crop=just_crop
)
media_tensor = torch.nn.functional.pad(media_tensor, padding)
return media_tensor
if __name__ == "__main__":
main()