Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
from accelerate import Accelerator
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import random
|
| 6 |
+
import requests
|
| 7 |
+
import streamlit as st
|
| 8 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 9 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 10 |
+
from langchain_core.prompts import PromptTemplate
|
| 11 |
+
from langchain_core.output_parsers import StrOutputParser
|
| 12 |
+
|
| 13 |
+
# Define the model IDs
|
| 14 |
+
llm_model_id = "mistralai/Mistral-7B-Instruct-v0.3"
|
| 15 |
+
blip_model_id = "Salesforce/blip-image-captioning-large"
|
| 16 |
+
|
| 17 |
+
# Initialize BLIP processor and model
|
| 18 |
+
processor = BlipProcessor.from_pretrained(blip_model_id)
|
| 19 |
+
model = BlipForConditionalGeneration.from_pretrained(blip_model_id)
|
| 20 |
+
|
| 21 |
+
# Initialize the accelerator
|
| 22 |
+
accelerator = Accelerator()
|
| 23 |
+
|
| 24 |
+
def get_llm_hf_inference(model_id=llm_model_id, max_new_tokens=128, temperature=0.1):
|
| 25 |
+
try:
|
| 26 |
+
llm = HuggingFaceEndpoint(
|
| 27 |
+
repo_id=model_id,
|
| 28 |
+
max_new_tokens=max_new_tokens,
|
| 29 |
+
temperature=temperature,
|
| 30 |
+
token=os.getenv("HF_TOKEN")
|
| 31 |
+
)
|
| 32 |
+
except Exception as e:
|
| 33 |
+
st.error(f"Error loading model: {e}")
|
| 34 |
+
llm = None
|
| 35 |
+
return llm
|
| 36 |
+
|
| 37 |
+
def generate_caption(image, min_len=30, max_len=100):
|
| 38 |
+
try:
|
| 39 |
+
inputs = processor(image, return_tensors="pt")
|
| 40 |
+
out = model.generate(**inputs, min_length=min_len, max_length=max_len)
|
| 41 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 42 |
+
return caption
|
| 43 |
+
except Exception as e:
|
| 44 |
+
st.error(f"Error generating caption: {e}")
|
| 45 |
+
return 'Unable to generate caption.'
|
| 46 |
+
|
| 47 |
+
# Configure the Streamlit app
|
| 48 |
+
st.set_page_config(page_title="HuggingFace ChatBot", page_icon="π€")
|
| 49 |
+
st.title("Personal HuggingFace ChatBot")
|
| 50 |
+
st.markdown(f"*This is a simple chatbot using the HuggingFace transformers library with {llm_model_id}.*")
|
| 51 |
+
|
| 52 |
+
# Initialize session state
|
| 53 |
+
if "avatars" not in st.session_state:
|
| 54 |
+
st.session_state.avatars = {'user': None, 'assistant': None}
|
| 55 |
+
|
| 56 |
+
if 'user_text' not in st.session_state:
|
| 57 |
+
st.session_state.user_text = None
|
| 58 |
+
|
| 59 |
+
if "max_response_length" not in st.session_state:
|
| 60 |
+
st.session_state.max_response_length = 256
|
| 61 |
+
|
| 62 |
+
if "system_message" not in st.session_state:
|
| 63 |
+
st.session_state.system_message = "friendly AI conversing with a human user"
|
| 64 |
+
|
| 65 |
+
if "starter_message" not in st.session_state:
|
| 66 |
+
st.session_state.starter_message = "Hello, there! How can I help you today?"
|
| 67 |
+
|
| 68 |
+
if "uploaded_image_path" not in st.session_state:
|
| 69 |
+
st.session_state.uploaded_image_path = None
|
| 70 |
+
|
| 71 |
+
# Sidebar for settings
|
| 72 |
+
with st.sidebar:
|
| 73 |
+
st.header("System Settings")
|
| 74 |
+
st.session_state.system_message = st.text_area(
|
| 75 |
+
"System Message", value="You are a friendly AI conversing with a human user."
|
| 76 |
+
)
|
| 77 |
+
st.session_state.starter_message = st.text_area(
|
| 78 |
+
'First AI Message', value="Hello, there! How can I help you today?"
|
| 79 |
+
)
|
| 80 |
+
st.session_state.max_response_length = st.number_input(
|
| 81 |
+
"Max Response Length", value=128
|
| 82 |
+
)
|
| 83 |
+
st.markdown("*Select Avatars:*")
|
| 84 |
+
col1, col2 = st.columns(2)
|
| 85 |
+
with col1:
|
| 86 |
+
st.session_state.avatars['assistant'] = st.selectbox(
|
| 87 |
+
"AI Avatar", options=["π€", "π¬", "π€"], index=0
|
| 88 |
+
)
|
| 89 |
+
with col2:
|
| 90 |
+
st.session_state.avatars['user'] = st.selectbox(
|
| 91 |
+
"User Avatar", options=["π€", "π±ββοΈ", "π¨πΎ", "π©", "π§πΎ"], index=0
|
| 92 |
+
)
|
| 93 |
+
reset_history = st.button("Reset Chat History")
|
| 94 |
+
|
| 95 |
+
# Initialize or reset chat history
|
| 96 |
+
if "chat_history" not in st.session_state or reset_history:
|
| 97 |
+
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
|
| 98 |
+
|
| 99 |
+
def get_response(system_message, chat_history, user_text, max_new_tokens=256):
|
| 100 |
+
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
|
| 101 |
+
if hf is None:
|
| 102 |
+
return "Error with model inference.", chat_history
|
| 103 |
+
|
| 104 |
+
prompt = PromptTemplate.from_template(
|
| 105 |
+
"[INST] {system_message}\nCurrent Conversation:\n{chat_history}\n\nUser: {user_text}.\n [/INST]\nAI:"
|
| 106 |
+
)
|
| 107 |
+
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
|
| 108 |
+
response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
|
| 109 |
+
response = response.split("AI:")[-1]
|
| 110 |
+
|
| 111 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
| 112 |
+
chat_history.append({'role': 'assistant', 'content': response})
|
| 113 |
+
return response, chat_history
|
| 114 |
+
|
| 115 |
+
# Chat interface
|
| 116 |
+
chat_interface = st.container()
|
| 117 |
+
with chat_interface:
|
| 118 |
+
output_container = st.container()
|
| 119 |
+
|
| 120 |
+
# Image upload and captioning
|
| 121 |
+
uploaded_image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 122 |
+
if uploaded_image and st.session_state.uploaded_image_path is None:
|
| 123 |
+
# Save the uploaded image to a session-local directory
|
| 124 |
+
with st.spinner("Processing image... 0%"):
|
| 125 |
+
image = Image.open(uploaded_image).convert("RGB")
|
| 126 |
+
|
| 127 |
+
# Create a directory for session images if not exists
|
| 128 |
+
if not os.path.exists("session_images"):
|
| 129 |
+
os.makedirs("session_images")
|
| 130 |
+
|
| 131 |
+
# Save image to local session directory
|
| 132 |
+
image_path = os.path.join("session_images", uploaded_image.name)
|
| 133 |
+
image.save(image_path)
|
| 134 |
+
|
| 135 |
+
# Generate and save caption
|
| 136 |
+
caption = generate_caption(image)
|
| 137 |
+
st.session_state.chat_history.append({'role': 'user', 'content': f''})
|
| 138 |
+
st.session_state.chat_history.append({'role': 'assistant', 'content': caption})
|
| 139 |
+
st.spinner("Processing image... 100%")
|
| 140 |
+
|
| 141 |
+
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
|
| 142 |
+
|
| 143 |
+
if st.session_state.user_text:
|
| 144 |
+
with st.chat_message("user", avatar=st.session_state.avatars['user']):
|
| 145 |
+
st.markdown(st.session_state.user_text)
|
| 146 |
+
with st.chat_message("assistant", avatar=st.session_state.avatars['assistant']):
|
| 147 |
+
response, st.session_state.chat_history = get_response(
|
| 148 |
+
system_message=st.session_state.system_message,
|
| 149 |
+
chat_history=st.session_state.chat_history,
|
| 150 |
+
user_text=st.session_state.user_text,
|
| 151 |
+
max_new_tokens=st.session_state.max_response_length
|
| 152 |
+
)
|
| 153 |
+
st.markdown(response)
|
| 154 |
+
st.spinner("Thinking... 100%")
|
| 155 |
+
|