Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import spaces
|
| 3 |
+
import os
|
| 4 |
+
import spaces
|
| 5 |
+
import torch
|
| 6 |
+
import random
|
| 7 |
+
import time
|
| 8 |
+
import re
|
| 9 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# Set an environment variable
|
| 13 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
+
|
| 15 |
+
zero = torch.Tensor([0]).cuda()
|
| 16 |
+
print(zero.device) # <-- 'cpu' 🤔
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
model_id = 'FINGU-AI/Finance-OrpoMistral-7B' #attn_implementation="flash_attention_2",
|
| 20 |
+
model = AutoModelForCausalLM.from_pretrained(model_id,attn_implementation="sdpa", torch_dtype= torch.bfloat16)
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 22 |
+
model.to('cuda')
|
| 23 |
+
|
| 24 |
+
# terminators = [
|
| 25 |
+
# tokenizer.eos_token_id,
|
| 26 |
+
# tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 27 |
+
# ]
|
| 28 |
+
|
| 29 |
+
generation_params = {
|
| 30 |
+
'max_new_tokens': 1000,
|
| 31 |
+
'use_cache': True,
|
| 32 |
+
'do_sample': True,
|
| 33 |
+
'temperature': 0.7,
|
| 34 |
+
'top_p': 0.9,
|
| 35 |
+
'top_k': 50,
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
@spaces.GPU
|
| 39 |
+
def inference(query):
|
| 40 |
+
messages = [
|
| 41 |
+
{"role": "system", "content": """You are a friendly AI assistant named Grinda, specialized in assisting users with trade, stock-related queries. Your tasks include providing insightful suggestions, tips, and winning trade strategies."""},
|
| 42 |
+
{"role": "user", "content": f"{query}"},
|
| 43 |
+
]
|
| 44 |
+
|
| 45 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
| 46 |
+
|
| 47 |
+
outputs = model.generate(tokenized_chat, **generation_params)
|
| 48 |
+
decoded_outputs = tokenizer.batch_decode(outputs)
|
| 49 |
+
assistant_response = decoded_outputs[0].split("Assistant:")[-1].strip()
|
| 50 |
+
return assistant_response
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def response(message, history):
|
| 54 |
+
text = inference(message)
|
| 55 |
+
for i in range(len(text)):
|
| 56 |
+
time.sleep(0.01)
|
| 57 |
+
yield text[: i + 1]
|
| 58 |
+
gr.ChatInterface(response).launch()
|