Spaces:
Runtime error
Runtime error
Create app.py (#1)
Browse files- Create app.py (5c0eadd20a7e56df0f6af66f4ae8ba9426d350d7)
app.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
# Load a pre-trained version of ClinicalGPT
|
| 3 |
+
model = AutoModelForCausalLM.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 4 |
+
# Tokenize your clinical text data using the AutoTokenizer class
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
| 6 |
+
# Convert your tokenized data into PyTorch tensors and create a PyTorch Dataset object
|
| 7 |
+
import torch
|
| 8 |
+
from torch.utils.data import Dataset
|
| 9 |
+
|
| 10 |
+
class ClinicalDataset(Dataset):
|
| 11 |
+
def __init__(self, texts, labels, tokenizer):
|
| 12 |
+
self.texts = texts
|
| 13 |
+
self.labels = labels
|
| 14 |
+
self.tokenizer = tokenizer
|
| 15 |
+
|
| 16 |
+
def __len__(self):
|
| 17 |
+
return len(self.texts)
|
| 18 |
+
|
| 19 |
+
def __getitem__(self, idx):
|
| 20 |
+
text = self.texts[idx]
|
| 21 |
+
label = self.labels[idx]
|
| 22 |
+
encoding = self.tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
| 23 |
+
return {"input_ids": encoding["input_ids"].squeeze(), "attention_mask": encoding["attention_mask"].squeeze(), "labels": torch.tensor(label)}
|
| 24 |
+
|
| 25 |
+
dataset = ClinicalDataset(texts=train_texts, labels=train_labels, tokenizer=tokenizer)
|
| 26 |
+
# Fine-tune the pre-trained model on your clinical dataset
|
| 27 |
+
from transformers import Trainer, TrainingArguments
|
| 28 |
+
|
| 29 |
+
training_args = TrainingArguments(
|
| 30 |
+
output_dir='./results', # output directory
|
| 31 |
+
num_train_epochs=3, # total number of training epochs
|
| 32 |
+
per_device_train_batch_size=16, # batch size per device during training
|
| 33 |
+
per_device_eval_batch_size=64, # batch size for evaluation
|
| 34 |
+
warmup_steps=500, # number of warmup steps for learning rate scheduler
|
| 35 |
+
weight_decay=0.01, # strength of weight decay
|
| 36 |
+
logging_dir='./logs', # directory for storing logs
|
| 37 |
+
logging_steps=10, )
|
| 38 |
+
|
| 39 |
+
trainer = Trainer(
|
| 40 |
+
model=model,
|
| 41 |
+
args=training_args,
|
| 42 |
+
train_dataset=dataset,
|
| 43 |
+
eval_dataset=val_dataset,
|
| 44 |
+
data_collator=lambda data: {'input_ids': torch.stack([f['input_ids'] for f in data]),
|
| 45 |
+
'attention_mask': torch.stack([f['attention_mask'] for f in data]),
|
| 46 |
+
'labels': torch.stack([f['labels'] for f in data])}, )
|
| 47 |
+
trainer.train()
|