Spaces:
Sleeping
Sleeping
Minimalistic version
Browse files
app.py
CHANGED
|
@@ -1,47 +1,18 @@
|
|
| 1 |
-
# Import necessary libraries
|
| 2 |
import streamlit as st
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
from transformers import GPT2LMHeadModel, GPT2Tokenizer, GPT2ForSequenceClassification, TrainingArguments, Trainer, DataCollatorWithPadding, DataCollatorForLanguageModeling
|
| 6 |
-
from text_processor import generate_text, classify_text
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
| 10 |
|
| 11 |
-
|
| 12 |
-
# Load and preprocess your CSV dataset.
|
| 13 |
-
df = pd.read_csv('stepkids_training_data.csv')
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# Step 3: Model Selection
|
| 22 |
-
# Load your GPT-2 model for text generation.
|
| 23 |
-
model_name = "gpt2" # Choose the appropriate GPT-2 model variant
|
| 24 |
-
text_gen_model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 25 |
-
text_gen_tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 26 |
-
text_gen_tokenizer.pad_token = text_gen_tokenizer.eos_token
|
| 27 |
-
|
| 28 |
-
# Load your sequence classification model (e.g., BERT)
|
| 29 |
-
seq_classifier_model = GPT2ForSequenceClassification.from_pretrained(model_name)
|
| 30 |
-
seq_classifier_tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 31 |
-
seq_classifier_tokenizer.pad_token = seq_classifier_tokenizer.eos_token
|
| 32 |
-
|
| 33 |
-
# Create a title and a text input for the app
|
| 34 |
-
st.title('Thematic Analysis with GPT-2 Large')
|
| 35 |
-
text = st.text_area('Enter some text')
|
| 36 |
-
|
| 37 |
-
# If the text is not empty, perform both text generation and sequence classification
|
| 38 |
-
if text:
|
| 39 |
-
# Perform text generation
|
| 40 |
-
generated_text = generate_text(text, text_gen_model, text_gen_tokenizer)
|
| 41 |
-
st.write('Generated Text:')
|
| 42 |
-
st.write(generated_text)
|
| 43 |
-
|
| 44 |
-
# Perform sequence classification
|
| 45 |
-
labels = classify_text(text, seq_classifier_model, seq_classifier_tokenizer)
|
| 46 |
-
st.write('Classified Labels:')
|
| 47 |
-
st.write(labels)
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
# Load the zero-shot classification pipeline
|
| 5 |
+
theme_detection = pipeline('zero-shot-classification')
|
| 6 |
|
| 7 |
+
st.title("Theme Detection App")
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
# Create a textarea for user input
|
| 10 |
+
user_text = st.text_area("Enter Text:", "Type here...")
|
| 11 |
|
| 12 |
+
if st.button("Detect Themes"):
|
| 13 |
+
# Perform theme detection
|
| 14 |
+
themes = theme_detection(user_text, ['Theme1', 'Theme2', 'Theme3'])
|
| 15 |
+
|
| 16 |
+
# Display the result
|
| 17 |
+
st.success(f"Detected Themes: {', '.join(themes['labels'])}")
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|