Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import the necessary libraries
|
| 2 |
+
import streamlit as st
|
| 3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, pipeline
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Load the gpt2-large model and tokenizer for text generation
|
| 7 |
+
gen_model = GPT2LMHeadModel.from_pretrained('gpt2-large')
|
| 8 |
+
gen_tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large')
|
| 9 |
+
|
| 10 |
+
# Load the zero-shot text classification pipeline from HuggingFace
|
| 11 |
+
classifier = pipeline('zero-shot-classification')
|
| 12 |
+
|
| 13 |
+
# Define a function that takes a text as input and returns a list of labels as output
|
| 14 |
+
def generate_labels(text):
|
| 15 |
+
# Append the special token [LABEL] to the text
|
| 16 |
+
text = text + ' [LABEL]'
|
| 17 |
+
# Convert the text to input ids and attention mask
|
| 18 |
+
input_ids = gen_tokenizer.encode(text, return_tensors='pt')
|
| 19 |
+
attention_mask = torch.ones_like(input_ids)
|
| 20 |
+
# Generate up to 5 labels from the model
|
| 21 |
+
outputs = gen_model.generate(input_ids, attention_mask=attention_mask, max_length=len(input_ids)+5, do_sample=True, top_p=0.95)
|
| 22 |
+
# Decode the generated text
|
| 23 |
+
generated = gen_tokenizer.decode(outputs[0], skip_special_tokens=False)
|
| 24 |
+
# Split the generated text by commas
|
| 25 |
+
labels = generated.split(',')
|
| 26 |
+
# Remove the special token and any whitespace from the labels
|
| 27 |
+
labels = [label.replace('[LABEL]', '').strip() for label in labels]
|
| 28 |
+
# Filter out any empty or duplicate labels
|
| 29 |
+
labels = list(dict.fromkeys(filter(None, labels)))
|
| 30 |
+
# Return the labels as a list
|
| 31 |
+
return labels
|
| 32 |
+
|
| 33 |
+
# Create a title and a text input for the app
|
| 34 |
+
st.title('Thematic Analysis with GPT-2 Large')
|
| 35 |
+
text = st.text_input('Enter some text to classify')
|
| 36 |
+
|
| 37 |
+
# If the text is not empty, generate labels and classify the text
|
| 38 |
+
if text:
|
| 39 |
+
# Generate labels from the text
|
| 40 |
+
labels = generate_labels(text)
|
| 41 |
+
# Display the generated labels
|
| 42 |
+
st.write(f'The generated labels are: {", ".join(labels)}')
|
| 43 |
+
# Classify the text using the generated labels
|
| 44 |
+
result = classifier(text, labels)
|
| 45 |
+
# Get the label and the score with the highest probability
|
| 46 |
+
label = result['labels'][0]
|
| 47 |
+
score = result['scores'][0]
|
| 48 |
+
# Display the label and the score
|
| 49 |
+
st.write(f'The predicted label is: {label}')
|
| 50 |
+
st.write(f'The probability is: {score:.4f}')
|