Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
|
@@ -7,6 +7,13 @@ from matplotlib.colors import ListedColormap, BoundaryNorm
|
|
| 7 |
from glob import glob
|
| 8 |
import os
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Load text benchmark results
|
| 11 |
csv_results = glob("results/*.pkl")
|
| 12 |
# Load vision benchmark results
|
|
@@ -16,6 +23,7 @@ cot_text_results = glob("results-cot/*.pkl")
|
|
| 16 |
# Load CoT vision benchmark results
|
| 17 |
# cot_vision_results = glob("results-vision-CoT/*.pkl")
|
| 18 |
|
|
|
|
| 19 |
# Function to load data, add model type and name
|
| 20 |
def load_data(files, model_type):
|
| 21 |
data = []
|
|
@@ -62,6 +70,18 @@ cot_text_data = {file: pd.read_pickle(file) for file in cot_text_results}
|
|
| 62 |
# cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}
|
| 63 |
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
def calculate_accuracy(df):
|
| 66 |
return df["parsed_judge_response"].mean() * 100
|
| 67 |
|
|
@@ -90,6 +110,7 @@ column_names = [
|
|
| 90 |
"Level 4 Accuracy",
|
| 91 |
]
|
| 92 |
|
|
|
|
| 93 |
# Function to process data
|
| 94 |
def process_data(data):
|
| 95 |
data_for_df = []
|
|
@@ -113,6 +134,7 @@ vision_accuracy_df = pd.DataFrame(vision_data_for_df, columns=column_names)
|
|
| 113 |
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
|
| 114 |
# cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)
|
| 115 |
|
|
|
|
| 116 |
# Function to finalize DataFrame
|
| 117 |
def finalize_df(df):
|
| 118 |
df = df.round(1) # Round to one decimal place
|
|
@@ -327,6 +349,63 @@ def generate_heatmap_for_specific_model_cot(model_name):
|
|
| 327 |
return fig
|
| 328 |
|
| 329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
def show_constraint_heatmap(evt: gr.SelectData):
|
| 331 |
model_name = evt.value
|
| 332 |
return generate_heatmap_for_specific_model(model_name)
|
|
@@ -337,6 +416,11 @@ def show_constraint_heatmap_cot(evt: gr.SelectData):
|
|
| 337 |
return generate_heatmap_for_specific_model_cot(model_name)
|
| 338 |
|
| 339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
with gr.Blocks() as demo:
|
| 341 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
| 342 |
with gr.Tab("Text-only Benchmark"):
|
|
@@ -417,6 +501,13 @@ with gr.Blocks() as demo:
|
|
| 417 |
constrained_leader_board_text_cot = gr.Dataframe()
|
| 418 |
constrained_leader_board_plot_cot = gr.Plot()
|
| 419 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 420 |
included_models_cot.select(
|
| 421 |
fn=calculate_order_by_first_substring_cot,
|
| 422 |
inputs=[included_models_cot],
|
|
@@ -436,4 +527,8 @@ with gr.Blocks() as demo:
|
|
| 436 |
fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
|
| 437 |
)
|
| 438 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 439 |
demo.launch()
|
|
|
|
| 7 |
from glob import glob
|
| 8 |
import os
|
| 9 |
|
| 10 |
+
|
| 11 |
+
import matplotlib.pyplot as plt
|
| 12 |
+
import seaborn as sns
|
| 13 |
+
from matplotlib.colors import ListedColormap, BoundaryNorm
|
| 14 |
+
import pandas as pd
|
| 15 |
+
|
| 16 |
+
|
| 17 |
# Load text benchmark results
|
| 18 |
csv_results = glob("results/*.pkl")
|
| 19 |
# Load vision benchmark results
|
|
|
|
| 23 |
# Load CoT vision benchmark results
|
| 24 |
# cot_vision_results = glob("results-vision-CoT/*.pkl")
|
| 25 |
|
| 26 |
+
|
| 27 |
# Function to load data, add model type and name
|
| 28 |
def load_data(files, model_type):
|
| 29 |
data = []
|
|
|
|
| 70 |
# cot_vision_data = {file: pd.read_pickle(file) for file in cot_vision_results}
|
| 71 |
|
| 72 |
|
| 73 |
+
intersection_df = pd.read_pickle(
|
| 74 |
+
"./intersection_results/gpt-3.5-judge-by_Qwen_5times_intersection_subset_1.pkl"
|
| 75 |
+
)
|
| 76 |
+
# accuracy for each model
|
| 77 |
+
intersection_df_acc = (
|
| 78 |
+
intersection_df.groupby("model_name")["parsed_judge_response"].mean().reset_index()
|
| 79 |
+
)
|
| 80 |
+
intersection_df_acc["Accuracy"] = intersection_df_acc["parsed_judge_response"] * 100
|
| 81 |
+
intersection_df_acc.drop("parsed_judge_response", axis=1, inplace=True)
|
| 82 |
+
intersection_df_acc.sort_values("Accuracy", ascending=False, inplace=True)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
def calculate_accuracy(df):
|
| 86 |
return df["parsed_judge_response"].mean() * 100
|
| 87 |
|
|
|
|
| 110 |
"Level 4 Accuracy",
|
| 111 |
]
|
| 112 |
|
| 113 |
+
|
| 114 |
# Function to process data
|
| 115 |
def process_data(data):
|
| 116 |
data_for_df = []
|
|
|
|
| 134 |
cot_text_accuracy_df = pd.DataFrame(cot_text_data_for_df, columns=column_names)
|
| 135 |
# cot_vision_accuracy_df = pd.DataFrame(cot_vision_data_for_df, columns=column_names)
|
| 136 |
|
| 137 |
+
|
| 138 |
# Function to finalize DataFrame
|
| 139 |
def finalize_df(df):
|
| 140 |
df = df.round(1) # Round to one decimal place
|
|
|
|
| 349 |
return fig
|
| 350 |
|
| 351 |
|
| 352 |
+
def generate_heatmap_for_intersection_model(model_name):
|
| 353 |
+
global intersection_df
|
| 354 |
+
|
| 355 |
+
cmap = ListedColormap(["lightblue", "red", "green"])
|
| 356 |
+
bounds = [-1.5, -0.5, 0.5, 1.5]
|
| 357 |
+
norm = BoundaryNorm(bounds, cmap.N)
|
| 358 |
+
|
| 359 |
+
# Filter for a specific model
|
| 360 |
+
model_df = intersection_df[intersection_df["model_name"] == model_name].copy()
|
| 361 |
+
|
| 362 |
+
if model_df.empty:
|
| 363 |
+
print(f"No data found for model {model_name}. Skipping heatmap generation.")
|
| 364 |
+
return None
|
| 365 |
+
|
| 366 |
+
model_df["fsm_info"] = model_df.apply(
|
| 367 |
+
lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
|
| 368 |
+
)
|
| 369 |
+
model_df = model_df.sort_values(by=["num_states", "num_alphabet"])
|
| 370 |
+
|
| 371 |
+
pivot_df = (
|
| 372 |
+
model_df.pivot_table(
|
| 373 |
+
index="fsm_info",
|
| 374 |
+
columns="substring_index",
|
| 375 |
+
values="parsed_judge_response",
|
| 376 |
+
aggfunc="first",
|
| 377 |
+
)
|
| 378 |
+
.fillna(-1)
|
| 379 |
+
.astype(float)
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
# Dynamically adjust figure size
|
| 383 |
+
num_rows, num_cols = pivot_df.shape
|
| 384 |
+
fig_width = max(12, num_cols * 0.5)
|
| 385 |
+
fig_height = max(8, num_rows * 0.4)
|
| 386 |
+
|
| 387 |
+
fig, ax = plt.subplots(figsize=(fig_width, fig_height))
|
| 388 |
+
sns.heatmap(
|
| 389 |
+
pivot_df,
|
| 390 |
+
cmap=cmap,
|
| 391 |
+
linewidths=1,
|
| 392 |
+
linecolor="black",
|
| 393 |
+
norm=norm,
|
| 394 |
+
cbar=False,
|
| 395 |
+
square=True,
|
| 396 |
+
ax=ax,
|
| 397 |
+
)
|
| 398 |
+
plt.title(f"Heatmap for Model: {model_name}", fontsize=12)
|
| 399 |
+
plt.xlabel("Substring Index")
|
| 400 |
+
plt.ylabel("FSM (States, Alphabet)")
|
| 401 |
+
plt.xticks(rotation=45)
|
| 402 |
+
|
| 403 |
+
sns.despine(ax=ax, top=True, right=True, left=True, bottom=True)
|
| 404 |
+
|
| 405 |
+
plt.close(fig) # Prevent it from showing immediately
|
| 406 |
+
return fig
|
| 407 |
+
|
| 408 |
+
|
| 409 |
def show_constraint_heatmap(evt: gr.SelectData):
|
| 410 |
model_name = evt.value
|
| 411 |
return generate_heatmap_for_specific_model(model_name)
|
|
|
|
| 416 |
return generate_heatmap_for_specific_model_cot(model_name)
|
| 417 |
|
| 418 |
|
| 419 |
+
def show_intersection_heatmap(evt: gr.SelectData):
|
| 420 |
+
model_name = evt.value
|
| 421 |
+
return generate_heatmap_for_intersection_model(model_name)
|
| 422 |
+
|
| 423 |
+
|
| 424 |
with gr.Blocks() as demo:
|
| 425 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
| 426 |
with gr.Tab("Text-only Benchmark"):
|
|
|
|
| 501 |
constrained_leader_board_text_cot = gr.Dataframe()
|
| 502 |
constrained_leader_board_plot_cot = gr.Plot()
|
| 503 |
|
| 504 |
+
with gr.Tab("Majority Vote (Subset 1)"):
|
| 505 |
+
gr.Markdown("## Majority Vote (Subset 1)")
|
| 506 |
+
intersection_leader_board = gr.Dataframe(
|
| 507 |
+
intersection_df_acc, headers=headers_with_icons
|
| 508 |
+
)
|
| 509 |
+
heatmap_image = gr.Plot(label="Model Heatmap")
|
| 510 |
+
|
| 511 |
included_models_cot.select(
|
| 512 |
fn=calculate_order_by_first_substring_cot,
|
| 513 |
inputs=[included_models_cot],
|
|
|
|
| 527 |
fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
|
| 528 |
)
|
| 529 |
|
| 530 |
+
intersection_leader_board.select(
|
| 531 |
+
fn=show_intersection_heatmap, outputs=[heatmap_image]
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
demo.launch()
|
intersection_results/gpt-3.5-judge-by_Qwen_5times_intersection_subset_1.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1cc52129234d9667a4cc388bd1da3a2021f1bbb7ea556e20ee6d5e159b2b1a8
|
| 3 |
+
size 1482609
|