Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
|
@@ -1,7 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from glob import glob
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load text benchmark results
|
| 7 |
csv_results = glob("results/*.pkl")
|
|
@@ -30,9 +34,7 @@ cot_text_data = load_data(cot_text_results, "CoT Text Only")
|
|
| 30 |
# cot_vision_data = load_data(cot_vision_results, "CoT Vision")
|
| 31 |
|
| 32 |
# Combine all data into a single DataFrame
|
| 33 |
-
all_data = pd.concat(
|
| 34 |
-
[data, vision_data, cot_text_data], ignore_index=True
|
| 35 |
-
)
|
| 36 |
|
| 37 |
all_model_names = all_data["Model Name"].unique()
|
| 38 |
all_text_only_model_names = list(
|
|
@@ -43,10 +45,13 @@ all_cot_text_only_models = list(
|
|
| 43 |
)
|
| 44 |
|
| 45 |
|
|
|
|
|
|
|
| 46 |
|
| 47 |
## Continue with the cold code --
|
| 48 |
# TODO: Update me to read from all_data for later
|
| 49 |
|
|
|
|
| 50 |
# Load the csv files into a dict with keys being name of the file and values being the data
|
| 51 |
data = {file: pd.read_pickle(file) for file in csv_results}
|
| 52 |
# Load the vision files into a dict
|
|
@@ -145,7 +150,7 @@ def load_cot_vision_heatmap(evt: gr.SelectData):
|
|
| 145 |
|
| 146 |
|
| 147 |
def calculate_order_by_first_substring(selected_models):
|
| 148 |
-
|
| 149 |
first_columns = all_data[all_data["substring_index"] == 1]
|
| 150 |
query_ids_df = first_columns[first_columns["Model Type"] == "Text Only"]
|
| 151 |
query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
|
|
@@ -158,6 +163,7 @@ def calculate_order_by_first_substring(selected_models):
|
|
| 158 |
|
| 159 |
text_only = all_data[all_data["Model Type"] == "Text Only"]
|
| 160 |
text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
|
|
|
|
| 161 |
|
| 162 |
query_ids = text_only_filtered.query_id.unique()
|
| 163 |
text_only_filtered = (
|
|
@@ -180,9 +186,8 @@ def calculate_order_by_first_substring(selected_models):
|
|
| 180 |
return text_only_filtered, number_of_queries, number_of_fsms
|
| 181 |
|
| 182 |
|
| 183 |
-
|
| 184 |
def calculate_order_by_first_substring_cot(selected_models):
|
| 185 |
-
|
| 186 |
first_columns = all_data[all_data["substring_index"] == 1]
|
| 187 |
query_ids_df = first_columns[first_columns["Model Type"] == "CoT Text Only"]
|
| 188 |
query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
|
|
@@ -195,6 +200,7 @@ def calculate_order_by_first_substring_cot(selected_models):
|
|
| 195 |
|
| 196 |
text_only = all_data[all_data["Model Type"] == "CoT Text Only"]
|
| 197 |
text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
|
|
|
|
| 198 |
|
| 199 |
query_ids = text_only_filtered.query_id.unique()
|
| 200 |
text_only_filtered = (
|
|
@@ -217,6 +223,108 @@ def calculate_order_by_first_substring_cot(selected_models):
|
|
| 217 |
return text_only_filtered, number_of_queries, number_of_fsms
|
| 218 |
|
| 219 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
with gr.Blocks() as demo:
|
| 221 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
| 222 |
with gr.Tab("Text-only Benchmark"):
|
|
@@ -273,6 +381,7 @@ with gr.Blocks() as demo:
|
|
| 273 |
number_of_fsms = gr.Textbox(label="Number of included FSMs")
|
| 274 |
|
| 275 |
constrained_leader_board_text = gr.Dataframe()
|
|
|
|
| 276 |
|
| 277 |
included_models.select(
|
| 278 |
fn=calculate_order_by_first_substring,
|
|
@@ -281,7 +390,6 @@ with gr.Blocks() as demo:
|
|
| 281 |
queue=True,
|
| 282 |
)
|
| 283 |
|
| 284 |
-
|
| 285 |
with gr.Tab("Constraint Text-only Results (CoT)"):
|
| 286 |
gr.Markdown("## Constraint Text-only Leaderboard by first substrin (CoT)")
|
| 287 |
included_models_cot = gr.CheckboxGroup(
|
|
@@ -295,12 +403,25 @@ with gr.Blocks() as demo:
|
|
| 295 |
number_of_fsms_cot = gr.Textbox(label="Number of included FSMs")
|
| 296 |
|
| 297 |
constrained_leader_board_text_cot = gr.Dataframe()
|
|
|
|
| 298 |
|
| 299 |
included_models_cot.select(
|
| 300 |
fn=calculate_order_by_first_substring_cot,
|
| 301 |
inputs=[included_models_cot],
|
| 302 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
queue=True,
|
| 304 |
)
|
| 305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
from glob import glob
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import seaborn as sns
|
| 6 |
+
from matplotlib.colors import ListedColormap, BoundaryNorm
|
| 7 |
+
from glob import glob
|
| 8 |
+
import os
|
| 9 |
|
| 10 |
# Load text benchmark results
|
| 11 |
csv_results = glob("results/*.pkl")
|
|
|
|
| 34 |
# cot_vision_data = load_data(cot_vision_results, "CoT Vision")
|
| 35 |
|
| 36 |
# Combine all data into a single DataFrame
|
| 37 |
+
all_data = pd.concat([data, vision_data, cot_text_data], ignore_index=True)
|
|
|
|
|
|
|
| 38 |
|
| 39 |
all_model_names = all_data["Model Name"].unique()
|
| 40 |
all_text_only_model_names = list(
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
|
| 48 |
+
text_only_filtered_raw = None
|
| 49 |
+
text_only_filtered_raw_cot = None
|
| 50 |
|
| 51 |
## Continue with the cold code --
|
| 52 |
# TODO: Update me to read from all_data for later
|
| 53 |
|
| 54 |
+
|
| 55 |
# Load the csv files into a dict with keys being name of the file and values being the data
|
| 56 |
data = {file: pd.read_pickle(file) for file in csv_results}
|
| 57 |
# Load the vision files into a dict
|
|
|
|
| 150 |
|
| 151 |
|
| 152 |
def calculate_order_by_first_substring(selected_models):
|
| 153 |
+
global text_only_filtered_raw
|
| 154 |
first_columns = all_data[all_data["substring_index"] == 1]
|
| 155 |
query_ids_df = first_columns[first_columns["Model Type"] == "Text Only"]
|
| 156 |
query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
|
|
|
|
| 163 |
|
| 164 |
text_only = all_data[all_data["Model Type"] == "Text Only"]
|
| 165 |
text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
|
| 166 |
+
text_only_filtered_raw = text_only_filtered.copy()
|
| 167 |
|
| 168 |
query_ids = text_only_filtered.query_id.unique()
|
| 169 |
text_only_filtered = (
|
|
|
|
| 186 |
return text_only_filtered, number_of_queries, number_of_fsms
|
| 187 |
|
| 188 |
|
|
|
|
| 189 |
def calculate_order_by_first_substring_cot(selected_models):
|
| 190 |
+
global text_only_filtered_raw_cot
|
| 191 |
first_columns = all_data[all_data["substring_index"] == 1]
|
| 192 |
query_ids_df = first_columns[first_columns["Model Type"] == "CoT Text Only"]
|
| 193 |
query_ids_df = query_ids_df[query_ids_df["Model Name"].isin(selected_models)]
|
|
|
|
| 200 |
|
| 201 |
text_only = all_data[all_data["Model Type"] == "CoT Text Only"]
|
| 202 |
text_only_filtered = text_only[text_only["fsm_id"].isin(fsm_ids)]
|
| 203 |
+
text_only_filtered_raw_cot = text_only_filtered.copy()
|
| 204 |
|
| 205 |
query_ids = text_only_filtered.query_id.unique()
|
| 206 |
text_only_filtered = (
|
|
|
|
| 223 |
return text_only_filtered, number_of_queries, number_of_fsms
|
| 224 |
|
| 225 |
|
| 226 |
+
def generate_heatmap_for_specific_model(model_name):
|
| 227 |
+
global text_only_filtered_raw
|
| 228 |
+
|
| 229 |
+
cmap = ListedColormap(["lightblue", "red", "green"])
|
| 230 |
+
bounds = [-1.5, -0.5, 0.5, 1.5]
|
| 231 |
+
norm = BoundaryNorm(bounds, cmap.N)
|
| 232 |
+
|
| 233 |
+
model_df = text_only_filtered_raw[
|
| 234 |
+
text_only_filtered_raw["Model Name"] == model_name
|
| 235 |
+
]
|
| 236 |
+
model_df["fsm_info"] = model_df.apply(
|
| 237 |
+
lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
|
| 238 |
+
)
|
| 239 |
+
model_df = model_df.sort_values(by=["num_states", "num_alphabet"])
|
| 240 |
+
|
| 241 |
+
pivot_df = (
|
| 242 |
+
model_df.pivot_table(
|
| 243 |
+
index="fsm_info",
|
| 244 |
+
columns="substring_index",
|
| 245 |
+
values="parsed_judge_response",
|
| 246 |
+
aggfunc="first",
|
| 247 |
+
)
|
| 248 |
+
.fillna(-1)
|
| 249 |
+
.astype(float)
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
# plt.figure(figsize=(12, 8))
|
| 253 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
| 254 |
+
sns.heatmap(
|
| 255 |
+
pivot_df,
|
| 256 |
+
cmap=cmap,
|
| 257 |
+
linewidths=1,
|
| 258 |
+
linecolor="black",
|
| 259 |
+
norm=norm,
|
| 260 |
+
cbar=False,
|
| 261 |
+
square=True,
|
| 262 |
+
ax=ax,
|
| 263 |
+
)
|
| 264 |
+
plt.title(f"Heatmap for Model: {model_name}", fontsize=20, weight="bold")
|
| 265 |
+
plt.xlabel("Substring Index")
|
| 266 |
+
plt.ylabel("FSM (States, Alphabet)")
|
| 267 |
+
plt.xticks(rotation=45)
|
| 268 |
+
|
| 269 |
+
return fig
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def generate_heatmap_for_specific_model_cot(model_name):
|
| 273 |
+
global text_only_filtered_raw
|
| 274 |
+
|
| 275 |
+
cmap = ListedColormap(["lightblue", "red", "green"])
|
| 276 |
+
bounds = [-1.5, -0.5, 0.5, 1.5]
|
| 277 |
+
norm = BoundaryNorm(bounds, cmap.N)
|
| 278 |
+
|
| 279 |
+
model_df = text_only_filtered_raw_cot[
|
| 280 |
+
text_only_filtered_raw_cot["Model Name"] == model_name
|
| 281 |
+
]
|
| 282 |
+
model_df["fsm_info"] = model_df.apply(
|
| 283 |
+
lambda x: f"{x['num_states']} states, {x['num_alphabet']} alphabet", axis=1
|
| 284 |
+
)
|
| 285 |
+
model_df = model_df.sort_values(by=["num_states", "num_alphabet"])
|
| 286 |
+
|
| 287 |
+
pivot_df = (
|
| 288 |
+
model_df.pivot_table(
|
| 289 |
+
index="fsm_info",
|
| 290 |
+
columns="substring_index",
|
| 291 |
+
values="parsed_judge_response",
|
| 292 |
+
aggfunc="first",
|
| 293 |
+
)
|
| 294 |
+
.fillna(-1)
|
| 295 |
+
.astype(float)
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
# plt.figure(figsize=(12, 8))
|
| 299 |
+
fig, ax = plt.subplots(figsize=(12, 8))
|
| 300 |
+
sns.heatmap(
|
| 301 |
+
pivot_df,
|
| 302 |
+
cmap=cmap,
|
| 303 |
+
linewidths=1,
|
| 304 |
+
linecolor="black",
|
| 305 |
+
norm=norm,
|
| 306 |
+
cbar=False,
|
| 307 |
+
square=True,
|
| 308 |
+
ax=ax,
|
| 309 |
+
)
|
| 310 |
+
plt.title(f"Heatmap for Model: {model_name}", fontsize=20, weight="bold")
|
| 311 |
+
plt.xlabel("Substring Index")
|
| 312 |
+
plt.ylabel("FSM (States, Alphabet)")
|
| 313 |
+
plt.xticks(rotation=45)
|
| 314 |
+
|
| 315 |
+
return fig
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
def show_constraint_heatmap(evt: gr.SelectData):
|
| 319 |
+
model_name = evt.value
|
| 320 |
+
return generate_heatmap_for_specific_model(model_name)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def show_constraint_heatmap_cot(evt: gr.SelectData):
|
| 324 |
+
model_name = evt.value
|
| 325 |
+
return generate_heatmap_for_specific_model_cot(model_name)
|
| 326 |
+
|
| 327 |
+
|
| 328 |
with gr.Blocks() as demo:
|
| 329 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
| 330 |
with gr.Tab("Text-only Benchmark"):
|
|
|
|
| 381 |
number_of_fsms = gr.Textbox(label="Number of included FSMs")
|
| 382 |
|
| 383 |
constrained_leader_board_text = gr.Dataframe()
|
| 384 |
+
constrained_leader_board_plot = gr.Plot()
|
| 385 |
|
| 386 |
included_models.select(
|
| 387 |
fn=calculate_order_by_first_substring,
|
|
|
|
| 390 |
queue=True,
|
| 391 |
)
|
| 392 |
|
|
|
|
| 393 |
with gr.Tab("Constraint Text-only Results (CoT)"):
|
| 394 |
gr.Markdown("## Constraint Text-only Leaderboard by first substrin (CoT)")
|
| 395 |
included_models_cot = gr.CheckboxGroup(
|
|
|
|
| 403 |
number_of_fsms_cot = gr.Textbox(label="Number of included FSMs")
|
| 404 |
|
| 405 |
constrained_leader_board_text_cot = gr.Dataframe()
|
| 406 |
+
constrained_leader_board_plot_cot = gr.Plot()
|
| 407 |
|
| 408 |
included_models_cot.select(
|
| 409 |
fn=calculate_order_by_first_substring_cot,
|
| 410 |
inputs=[included_models_cot],
|
| 411 |
+
outputs=[
|
| 412 |
+
constrained_leader_board_text_cot,
|
| 413 |
+
number_of_queries_cot,
|
| 414 |
+
number_of_fsms_cot,
|
| 415 |
+
],
|
| 416 |
queue=True,
|
| 417 |
)
|
| 418 |
|
| 419 |
+
constrained_leader_board_text.select(
|
| 420 |
+
fn=show_constraint_heatmap, outputs=[constrained_leader_board_plot]
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
constrained_leader_board_text_cot.select(
|
| 424 |
+
fn=show_constraint_heatmap_cot, outputs=[constrained_leader_board_plot_cot]
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
demo.launch()
|