Spaces:
Sleeping
Sleeping
update
Browse files
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from glob import glob
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
csv_results = glob("results/*.csv")
|
| 7 |
+
# load the csv files into a dict with keys being name of the file and values being the data
|
| 8 |
+
data = {file: pd.read_csv(file) for file in csv_results}
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def calculate_accuracy(df):
|
| 12 |
+
return df["parsed_judge_response"].mean() * 100
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def accuracy_breakdown(df):
|
| 16 |
+
# 4 level accuracy
|
| 17 |
+
return (df.groupby("difficulty_level")["parsed_judge_response"].mean() * 100).values
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Define the column names with icons
|
| 21 |
+
headers_with_icons = [
|
| 22 |
+
"π€ Model Name",
|
| 23 |
+
"β Overall",
|
| 24 |
+
"π Level 1",
|
| 25 |
+
"π Level 2",
|
| 26 |
+
"π Level 3",
|
| 27 |
+
"π¬ Level 4",
|
| 28 |
+
]
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
accuracy = {file: calculate_accuracy(data[file]) for file in data}
|
| 32 |
+
|
| 33 |
+
# Create a list to hold the data
|
| 34 |
+
data_for_df = []
|
| 35 |
+
# Define the column names with icons
|
| 36 |
+
|
| 37 |
+
# Iterate over each file and its corresponding DataFrame in the data dictionary
|
| 38 |
+
for file, df in data.items():
|
| 39 |
+
# Get the overall accuracy and round it
|
| 40 |
+
overall_accuracy = round(calculate_accuracy(df), 2)
|
| 41 |
+
# Get the breakdown accuracy and round each value
|
| 42 |
+
breakdown_accuracy = [round(acc, 2) for acc in accuracy_breakdown(df)]
|
| 43 |
+
# Prepare the model name from the file name
|
| 44 |
+
model_name = file.split("/")[-1].replace(".csv", "") # Corrected the file extension
|
| 45 |
+
# Append the data to the list
|
| 46 |
+
data_for_df.append([model_name, overall_accuracy] + breakdown_accuracy)
|
| 47 |
+
|
| 48 |
+
# Define the column names, adjust based on the number of difficulty levels you have
|
| 49 |
+
column_names = [
|
| 50 |
+
"Model Name",
|
| 51 |
+
"Overall Accuracy",
|
| 52 |
+
"Level 1 Accuracy",
|
| 53 |
+
"Level 2 Accuracy",
|
| 54 |
+
"Level 3 Accuracy",
|
| 55 |
+
"Level 4 Accuracy",
|
| 56 |
+
]
|
| 57 |
+
|
| 58 |
+
# Create the DataFrame
|
| 59 |
+
accuracy_df = pd.DataFrame(data_for_df, columns=column_names)
|
| 60 |
+
accuracy_df.columns = headers_with_icons
|
| 61 |
+
accuracy_df.sort_values(by="β Overall", ascending=False, inplace=True)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
with gr.Blocks() as demo:
|
| 65 |
+
gr.Markdown("# FSMBench Leaderboard")
|
| 66 |
+
# add link to home page and dataset
|
| 67 |
+
|
| 68 |
+
leader_board = gr.Dataframe(accuracy_df, headers=headers_with_icons)
|
| 69 |
+
|
| 70 |
+
demo.launch()
|