Spaces:
Sleeping
Sleeping
update
Browse files
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
from glob import glob
|
| 4 |
|
|
|
|
| 5 |
# Load text benchmark results
|
| 6 |
csv_results = glob("results/*.pkl")
|
| 7 |
# Load vision benchmark results
|
|
@@ -11,6 +12,35 @@ cot_text_results = glob("results-cot/*.pkl")
|
|
| 11 |
# Load CoT vision benchmark results
|
| 12 |
cot_vision_results = glob("results-vision-CoT/*.pkl")
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# Load the csv files into a dict with keys being name of the file and values being the data
|
| 15 |
data = {file: pd.read_pickle(file) for file in csv_results}
|
| 16 |
# Load the vision files into a dict
|
|
@@ -88,6 +118,8 @@ cot_text_accuracy_df = finalize_df(cot_text_accuracy_df)
|
|
| 88 |
cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)
|
| 89 |
|
| 90 |
|
|
|
|
|
|
|
| 91 |
def load_heatmap(evt: gr.SelectData):
|
| 92 |
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
|
| 93 |
return heatmap_image
|
|
@@ -108,6 +140,48 @@ def load_cot_vision_heatmap(evt: gr.SelectData):
|
|
| 108 |
return heatmap_image
|
| 109 |
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
with gr.Blocks() as demo:
|
| 112 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
| 113 |
with gr.Tab("Text-only Benchmark"):
|
|
@@ -150,4 +224,14 @@ with gr.Blocks() as demo:
|
|
| 150 |
fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
|
| 151 |
)
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
demo.launch()
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from glob import glob
|
| 4 |
|
| 5 |
+
|
| 6 |
# Load text benchmark results
|
| 7 |
csv_results = glob("results/*.pkl")
|
| 8 |
# Load vision benchmark results
|
|
|
|
| 12 |
# Load CoT vision benchmark results
|
| 13 |
cot_vision_results = glob("results-vision-CoT/*.pkl")
|
| 14 |
|
| 15 |
+
# Function to load data, add model type and name
|
| 16 |
+
def load_data(files, model_type):
|
| 17 |
+
data = []
|
| 18 |
+
for file in files:
|
| 19 |
+
df = pd.read_pickle(file)
|
| 20 |
+
df["Model Type"] = model_type
|
| 21 |
+
df["Model Name"] = file.split("/")[-1].replace(".pkl", "")
|
| 22 |
+
data.append(df)
|
| 23 |
+
return pd.concat(data, ignore_index=True)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# Load and label all data
|
| 27 |
+
data = load_data(csv_results, "Text Only")
|
| 28 |
+
vision_data = load_data(vision_results, "Vision")
|
| 29 |
+
cot_text_data = load_data(cot_text_results, "CoT Text Only")
|
| 30 |
+
cot_vision_data = load_data(cot_vision_results, "CoT Vision")
|
| 31 |
+
|
| 32 |
+
# Combine all data into a single DataFrame
|
| 33 |
+
all_data = pd.concat(
|
| 34 |
+
[data, vision_data, cot_text_data, cot_vision_data], ignore_index=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
all_model_names = all_data['Model Name'].unique()
|
| 38 |
+
all_text_only_model_names = list(all_data[all_data['Model Type'] == 'Text Only']['Model Name'].unique())
|
| 39 |
+
print(all_text_only_model_names)
|
| 40 |
+
|
| 41 |
+
## Continue with the cold code --
|
| 42 |
+
# TODO: Update me to read from all_data for later
|
| 43 |
+
|
| 44 |
# Load the csv files into a dict with keys being name of the file and values being the data
|
| 45 |
data = {file: pd.read_pickle(file) for file in csv_results}
|
| 46 |
# Load the vision files into a dict
|
|
|
|
| 118 |
cot_vision_accuracy_df = finalize_df(cot_vision_accuracy_df)
|
| 119 |
|
| 120 |
|
| 121 |
+
|
| 122 |
+
|
| 123 |
def load_heatmap(evt: gr.SelectData):
|
| 124 |
heatmap_image = gr.Image(f"results/{evt.value}.jpg")
|
| 125 |
return heatmap_image
|
|
|
|
| 140 |
return heatmap_image
|
| 141 |
|
| 142 |
|
| 143 |
+
def calculate_order_by_first_substring(selected_models):
|
| 144 |
+
|
| 145 |
+
first_columns = all_data[all_data['substring_index'] == 1]
|
| 146 |
+
query_ids_df = first_columns[first_columns['Model Type'] == 'Text Only']
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
# Filter to include only the selected models
|
| 150 |
+
query_ids_df = query_ids_df[query_ids_df['Model Name'].isin(selected_models)]
|
| 151 |
+
|
| 152 |
+
print(len(query_ids_df))
|
| 153 |
+
|
| 154 |
+
query_ids_df = query_ids_df.groupby('query_id').filter(lambda x: x['parsed_judge_response'].eq(1).all())
|
| 155 |
+
|
| 156 |
+
print(len(query_ids_df))
|
| 157 |
+
|
| 158 |
+
query_ids = query_ids_df.query_id.unique()
|
| 159 |
+
# print('query_ids', len(query_ids))
|
| 160 |
+
|
| 161 |
+
# filter out fsm_ids and
|
| 162 |
+
fsm_ids = query_ids_df.fsm_id.unique()
|
| 163 |
+
print('fsm_ids', len(fsm_ids), "Total of 25 FSM is solvable by everything on the first substring")
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
# now filter all_data for query_ids and text only, then calcaulte the accuracy based on the parsed_judge_response for each model
|
| 167 |
+
|
| 168 |
+
text_only = all_data[all_data['Model Type'] == 'Text Only']
|
| 169 |
+
text_only_filtered = text_only[text_only['fsm_id'].isin(fsm_ids)]
|
| 170 |
+
# print # of query_ids from text_only_filtered
|
| 171 |
+
print(f"Number of query_ids from text_only_filtered: {len(text_only_filtered.query_id.unique())}")
|
| 172 |
+
|
| 173 |
+
text_only_filtered = text_only_filtered.groupby(['Model Name'])['parsed_judge_response'].mean().reset_index()
|
| 174 |
+
text_only_filtered['Accuracy'] = text_only_filtered['parsed_judge_response'] * 100
|
| 175 |
+
text_only_filtered.drop('parsed_judge_response', axis=1, inplace=True)
|
| 176 |
+
text_only_filtered.sort_values('Accuracy', ascending=False)
|
| 177 |
+
|
| 178 |
+
# round to two decimal places
|
| 179 |
+
text_only_filtered['Accuracy'] = text_only_filtered['Accuracy'].apply(lambda x: round(x, 2))
|
| 180 |
+
|
| 181 |
+
return text_only_filtered
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
with gr.Blocks() as demo:
|
| 186 |
gr.Markdown("# FSM Benchmark Leaderboard")
|
| 187 |
with gr.Tab("Text-only Benchmark"):
|
|
|
|
| 224 |
fn=load_cot_vision_heatmap, outputs=[cot_heatmap_image_vision]
|
| 225 |
)
|
| 226 |
|
| 227 |
+
with gr.Tab("Constraint Text-only Results"):
|
| 228 |
+
gr.Markdown("## Constraint Text-only Leaderboard by first substring")
|
| 229 |
+
included_models = gr.CheckboxGroup(
|
| 230 |
+
label="Models to include", choices=all_text_only_model_names, value=all_text_only_model_names
|
| 231 |
+
)
|
| 232 |
+
constrained_leader_board_text = gr.Dataframe()
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
included_models.input(fn=calculate_order_by_first_substring, inputs=[included_models], outputs=[constrained_leader_board_text])
|
| 236 |
+
|
| 237 |
demo.launch()
|