Spaces:
Running
on
Zero
Running
on
Zero
| from contextlib import contextmanager | |
| import torch | |
| import torch.nn as nn | |
| def init_empty_weights(include_buffers: bool=False): | |
| """Meta initialization context manager. | |
| A context manager under which models are initialized with all parameters | |
| on the meta device, therefore creating an empty model. Useful when just | |
| initializing the model would blow the available RAM. | |
| Args: | |
| include_buffers (`bool`, *optional*, defaults to `False`): Whether or | |
| not to also put all buffers on the meta device while initializing. | |
| Example: | |
| ```python | |
| import torch.nn as nn | |
| # Initialize a model with 100 billions parameters in no time and without using any RAM. | |
| with init_empty_weights(): | |
| tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) | |
| ``` | |
| <Tip warning={true}> | |
| Any model created under this context manager has no weights. As such you can't do something like | |
| `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`]. | |
| </Tip> | |
| """ | |
| with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f: | |
| yield f | |
| def init_on_device(device: torch.device, include_buffers: bool=False): | |
| """Device initialization context manager. | |
| A context manager under which models are initialized with all parameters | |
| on the specified device. | |
| Args: | |
| device (`torch.device`): Device to initialize all parameters on. | |
| include_buffers (`bool`, *optional*, defaults to `False`): Whether or | |
| not to also put all buffers on the meta device while initializing. | |
| Example: | |
| ```python | |
| import torch.nn as nn | |
| with init_on_device(device=torch.device("cuda")): | |
| tst = nn.Liner(100, 100) # on `cuda` device | |
| ``` | |
| """ | |
| old_register_parameter = nn.Module.register_parameter | |
| if include_buffers: | |
| old_register_buffer = nn.Module.register_buffer | |
| def register_empty_parameter(module, name, param): | |
| old_register_parameter(module, name, param) | |
| if param is not None: | |
| param_cls = type(module._parameters[name]) | |
| kwargs = module._parameters[name].__dict__ | |
| module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs) | |
| def register_empty_buffer(module, name, buffer): | |
| old_register_buffer(module, name, buffer) | |
| if buffer is not None: | |
| module._buffers[name] = module._buffers[name].to(device) | |
| if include_buffers: | |
| tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']} | |
| else: | |
| tensor_constructors_to_patch = {} | |
| def patch_tensor_constructor(fn): | |
| def wrapper(*args, **kwargs): | |
| kwargs['device'] = device | |
| return fn(*args, **kwargs) | |
| return wrapper | |
| try: | |
| nn.Module.register_parameter = register_empty_parameter | |
| if include_buffers: | |
| nn.Module.register_buffer = register_empty_buffer | |
| for torch_function_name in tensor_constructors_to_patch.keys(): | |
| setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name))) | |
| yield | |
| finally: | |
| nn.Module.register_parameter = old_register_parameter | |
| if include_buffers: | |
| nn.Module.register_buffer = old_register_buffer | |
| for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items(): | |
| setattr(torch, torch_function_name, old_torch_function) |